Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Influence of pre-fermentative steps on varietal thiol precursors

Influence of pre-fermentative steps on varietal thiol precursors

Abstract

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH), S-3-(hexan-1-ol)-L-cysteine (Cys-3SH) and S-3-(hexanal)-glutathione (G-3SHal) in the grape must. The role of grape must extraction steps on the content of volatile thiol precursors (VTP) in must fractions was investigated.

Grillo grape must samples were drawn along with the grape must extraction process in a winery under either air-exposed or air-free conditions, as well as under laboratory conditions and their VTP and glutathione (GSH) content was assessed by UPLC-HRMS. The roles of copper ions and sulfite were also investigated.

Under industrial conditions, more than 95% of the grape G-3SHal was lost following to the grape crushing due to sulphite addition. The content G-3SH and Cys-3SH increased with the must yield, specially under air-exposed conditions, while the GSH level decreased. Under laboratory conditions, trace amount of 3-SHal was obtained when air-free condition was applied or sulfite was added, instead milligrams per litre levels were obtained if air-exposed condition was applied, especially (14.5 mg/L) when copper sequestering salts were added. Negligible amounts of GSH (as well as grape reaction product) were detected in all the laboratory-made samples except when sulphite was added (GSH=33 mg/L).

The data strongly suggest that G-3SHal in grape must is mainly produced along with must extraction following to the binding of GSH to (E)-2-hexenal which is readily reduced to G-3SH. Sulfite addition strongly prevents the VTP formation, as well as copper ions. Therefore, grape must extraction must be considered among the main factors affecting the VTP content in grape must.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Daniela Fracassetti, Ivano De Noni, Milda Stuknytė, Valentina Pica, Antonio Tirelli

Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, Milan, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

The zoning of grapevine in a hilly area should consider the variability of the environmental characteristics due to topography. Since soil and climate data are usually available as point data

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.