Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Influence of pre-fermentative steps on varietal thiol precursors

Influence of pre-fermentative steps on varietal thiol precursors

Abstract

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH), S-3-(hexan-1-ol)-L-cysteine (Cys-3SH) and S-3-(hexanal)-glutathione (G-3SHal) in the grape must. The role of grape must extraction steps on the content of volatile thiol precursors (VTP) in must fractions was investigated.

Grillo grape must samples were drawn along with the grape must extraction process in a winery under either air-exposed or air-free conditions, as well as under laboratory conditions and their VTP and glutathione (GSH) content was assessed by UPLC-HRMS. The roles of copper ions and sulfite were also investigated.

Under industrial conditions, more than 95% of the grape G-3SHal was lost following to the grape crushing due to sulphite addition. The content G-3SH and Cys-3SH increased with the must yield, specially under air-exposed conditions, while the GSH level decreased. Under laboratory conditions, trace amount of 3-SHal was obtained when air-free condition was applied or sulfite was added, instead milligrams per litre levels were obtained if air-exposed condition was applied, especially (14.5 mg/L) when copper sequestering salts were added. Negligible amounts of GSH (as well as grape reaction product) were detected in all the laboratory-made samples except when sulphite was added (GSH=33 mg/L).

The data strongly suggest that G-3SHal in grape must is mainly produced along with must extraction following to the binding of GSH to (E)-2-hexenal which is readily reduced to G-3SH. Sulfite addition strongly prevents the VTP formation, as well as copper ions. Therefore, grape must extraction must be considered among the main factors affecting the VTP content in grape must.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Daniela Fracassetti, Ivano De Noni, Milda Stuknytė, Valentina Pica, Antonio Tirelli

Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, Milan, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations.

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).