Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Influence of pre-fermentative steps on varietal thiol precursors

Influence of pre-fermentative steps on varietal thiol precursors

Abstract

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH), S-3-(hexan-1-ol)-L-cysteine (Cys-3SH) and S-3-(hexanal)-glutathione (G-3SHal) in the grape must. The role of grape must extraction steps on the content of volatile thiol precursors (VTP) in must fractions was investigated.

Grillo grape must samples were drawn along with the grape must extraction process in a winery under either air-exposed or air-free conditions, as well as under laboratory conditions and their VTP and glutathione (GSH) content was assessed by UPLC-HRMS. The roles of copper ions and sulfite were also investigated.

Under industrial conditions, more than 95% of the grape G-3SHal was lost following to the grape crushing due to sulphite addition. The content G-3SH and Cys-3SH increased with the must yield, specially under air-exposed conditions, while the GSH level decreased. Under laboratory conditions, trace amount of 3-SHal was obtained when air-free condition was applied or sulfite was added, instead milligrams per litre levels were obtained if air-exposed condition was applied, especially (14.5 mg/L) when copper sequestering salts were added. Negligible amounts of GSH (as well as grape reaction product) were detected in all the laboratory-made samples except when sulphite was added (GSH=33 mg/L).

The data strongly suggest that G-3SHal in grape must is mainly produced along with must extraction following to the binding of GSH to (E)-2-hexenal which is readily reduced to G-3SH. Sulfite addition strongly prevents the VTP formation, as well as copper ions. Therefore, grape must extraction must be considered among the main factors affecting the VTP content in grape must.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Daniela Fracassetti, Ivano De Noni, Milda Stuknytė, Valentina Pica, Antonio Tirelli

Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, Milan, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process.

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière.

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS).

Water recharge before budbreak and/or deficit irrigation during summer: agronomic effects on cv. Tempranillo in the D.O. Ribera del Duero

The availability of water in the soil and the water status of the vineyard are proving to be determining factors for crop management in the current context of climatic variation

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.