Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Influence of pre-fermentative steps on varietal thiol precursors

Influence of pre-fermentative steps on varietal thiol precursors

Abstract

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH), S-3-(hexan-1-ol)-L-cysteine (Cys-3SH) and S-3-(hexanal)-glutathione (G-3SHal) in the grape must. The role of grape must extraction steps on the content of volatile thiol precursors (VTP) in must fractions was investigated.

Grillo grape must samples were drawn along with the grape must extraction process in a winery under either air-exposed or air-free conditions, as well as under laboratory conditions and their VTP and glutathione (GSH) content was assessed by UPLC-HRMS. The roles of copper ions and sulfite were also investigated.

Under industrial conditions, more than 95% of the grape G-3SHal was lost following to the grape crushing due to sulphite addition. The content G-3SH and Cys-3SH increased with the must yield, specially under air-exposed conditions, while the GSH level decreased. Under laboratory conditions, trace amount of 3-SHal was obtained when air-free condition was applied or sulfite was added, instead milligrams per litre levels were obtained if air-exposed condition was applied, especially (14.5 mg/L) when copper sequestering salts were added. Negligible amounts of GSH (as well as grape reaction product) were detected in all the laboratory-made samples except when sulphite was added (GSH=33 mg/L).

The data strongly suggest that G-3SHal in grape must is mainly produced along with must extraction following to the binding of GSH to (E)-2-hexenal which is readily reduced to G-3SH. Sulfite addition strongly prevents the VTP formation, as well as copper ions. Therefore, grape must extraction must be considered among the main factors affecting the VTP content in grape must.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Daniela Fracassetti, Ivano De Noni, Milda Stuknytė, Valentina Pica, Antonio Tirelli

Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, Milan, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains.

Salubrity of environment and zoning process: first consideration on the radioactivity of vineyard soils

La salubrité du milieu et des aliments intervient de plus en plus lourdement, et souvent négativement, sur la santé de l’homme, aussi bien sur l’individu que sur la société tout entière.