Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Abstract

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters. The ability of this species to compete in a harsh environment such as wine is due to elaborate survival strategies. Biofilm formation is the principal way of resisting environmental stresses and represent the main microbial lifestyle in natural niches. Therefore, in this study 10 strains of C. zemplinina were analyzed to assess cell surface hydrophobicity using microbial adhesion to solvents (MATS) test and tested for their ability to form biofilms on winemaking material such as stainless steel and oak chips. The contribution of C. zemplinina biofilm on this material to wine aroma was evaluated. All strains showed a certain degree of hydrophobicity, and adhered to tested surfaces. In particular, sessile cells on chips ranged from 4.3 Log CFU/mL to 6 Log CFU/mL, while on stainless steel from 2.6 CFU/mL to 4.2 CFU/mL. Solid-phase microextraction gas chromatography-mass spectrometry showed that biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds. Therefore, surface-associated behaviours should be considered in the development of improved strategies to shape aroma profile of wines.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Giorgia Perpetuini, Noemi Battistelli, Alessio Pio Rossetti, Giuseppe Arfelli, Rosanna Tofalo

Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo – Via R. Balzarini, 1, 64100, Teramo, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.

Environmental and yearly influences on four Sicilian grape clones under climate change challenges

By the end of this century, up to 90% of traditional viticulture regions in the Mediterranean, including Sicily, are projected to face extinction due to escalating climate challenges such as severe droughts, heatwaves, and unseasonal rains.