Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Rapid optical method for tannins estimation in red wines

Rapid optical method for tannins estimation in red wines

Abstract

In this work, an innovative analytical method has been proposed for fast and reliable in-line analysis of tannins in wines; the method is fast, does not require sample preparation and is based on the selective reactivity of tannins in a mixture containing proteinaceous matter (i.e. gelatin), under pH 3.5, resulting in the formation of white cloudiness. The modification of the optical properties of the wine/gelatin mixture is selectively associated to the tannins content, and it is detected with high accuracy by an optical prototype instrument, namely a Spectral-Sensitive Pulsed Photometer (SSPP) which has been previously described in the literature. The SSPP operate with a wavelength-sensitive pulsed electromagnetic source, with maximum emission around 890 nm, eliminating potential interferences from wine color. Preliminary results showed potentialities in the quantification of procyanidins in red wines, obtaining non-linear correlations with values obtained using the Adams-Harbertson colorimetric assay (R2 up to 0.966). Main advantages involve the high selectivity of the reaction responsible for turbidity formation, and simple, cost-effective and dimensionable technology of the optical device; these properties have suggested the potential exploitation of the method to support decisional strategies along the supply chain, improving the control of the production process and the quality of wines. 

The analytical method has been proposed for obtaining patent protection at the National (Patent nr. 102019000002585, 22 February 2019) and International (PCT/IB2020/051304, 12 March 2020) levels.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Arianna Ricci1,2, Eleonora Iaccheri2, Alessandro Benelli1, Giuseppina P. Parpinello1,2, Andrea Versari1,2, Luigi Ragni1,2

1Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, 47521, Cesena, FC, Italy.
2Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Q. Bucci, 336, 47521, Cesena, FC, Italy.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes).

A.O.C. huile d’olive de Nyons et olives noires de Nyons

A.O.C. huile d’olive de Nyons et olives noires de Nyons

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture.