Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Rapid optical method for tannins estimation in red wines

Rapid optical method for tannins estimation in red wines

Abstract

In this work, an innovative analytical method has been proposed for fast and reliable in-line analysis of tannins in wines; the method is fast, does not require sample preparation and is based on the selective reactivity of tannins in a mixture containing proteinaceous matter (i.e. gelatin), under pH 3.5, resulting in the formation of white cloudiness. The modification of the optical properties of the wine/gelatin mixture is selectively associated to the tannins content, and it is detected with high accuracy by an optical prototype instrument, namely a Spectral-Sensitive Pulsed Photometer (SSPP) which has been previously described in the literature. The SSPP operate with a wavelength-sensitive pulsed electromagnetic source, with maximum emission around 890 nm, eliminating potential interferences from wine color. Preliminary results showed potentialities in the quantification of procyanidins in red wines, obtaining non-linear correlations with values obtained using the Adams-Harbertson colorimetric assay (R2 up to 0.966). Main advantages involve the high selectivity of the reaction responsible for turbidity formation, and simple, cost-effective and dimensionable technology of the optical device; these properties have suggested the potential exploitation of the method to support decisional strategies along the supply chain, improving the control of the production process and the quality of wines. 

The analytical method has been proposed for obtaining patent protection at the National (Patent nr. 102019000002585, 22 February 2019) and International (PCT/IB2020/051304, 12 March 2020) levels.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Arianna Ricci1,2, Eleonora Iaccheri2, Alessandro Benelli1, Giuseppina P. Parpinello1,2, Andrea Versari1,2, Luigi Ragni1,2

1Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, 47521, Cesena, FC, Italy.
2Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Q. Bucci, 336, 47521, Cesena, FC, Italy.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Use of sensors/biosensors for detection of food safety parameters in wine

The implementation of food safety assurance systems in wineries involves ensuring that the wines produced do not pose a risk to consumer health and are therefore free from harmful substances, such as those that may be incorporated during the production process (pesticides, additives, etc.), allergens or mycotoxins.

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for

Effect of auxin treatment on delaying maturation of grape cultivars in the Valpolicella viticultural area

The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.

Bilan de l’impact des pratiques viticoles sur la qualité biologique des sols

Dans le cadre de TerclimPro 2025, Laure Gontier a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8481

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.