Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Rapid optical method for tannins estimation in red wines

Rapid optical method for tannins estimation in red wines

Abstract

In this work, an innovative analytical method has been proposed for fast and reliable in-line analysis of tannins in wines; the method is fast, does not require sample preparation and is based on the selective reactivity of tannins in a mixture containing proteinaceous matter (i.e. gelatin), under pH 3.5, resulting in the formation of white cloudiness. The modification of the optical properties of the wine/gelatin mixture is selectively associated to the tannins content, and it is detected with high accuracy by an optical prototype instrument, namely a Spectral-Sensitive Pulsed Photometer (SSPP) which has been previously described in the literature. The SSPP operate with a wavelength-sensitive pulsed electromagnetic source, with maximum emission around 890 nm, eliminating potential interferences from wine color. Preliminary results showed potentialities in the quantification of procyanidins in red wines, obtaining non-linear correlations with values obtained using the Adams-Harbertson colorimetric assay (R2 up to 0.966). Main advantages involve the high selectivity of the reaction responsible for turbidity formation, and simple, cost-effective and dimensionable technology of the optical device; these properties have suggested the potential exploitation of the method to support decisional strategies along the supply chain, improving the control of the production process and the quality of wines. 

The analytical method has been proposed for obtaining patent protection at the National (Patent nr. 102019000002585, 22 February 2019) and International (PCT/IB2020/051304, 12 March 2020) levels.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Arianna Ricci1,2, Eleonora Iaccheri2, Alessandro Benelli1, Giuseppina P. Parpinello1,2, Andrea Versari1,2, Luigi Ragni1,2

1Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, 47521, Cesena, FC, Italy.
2Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Q. Bucci, 336, 47521, Cesena, FC, Italy.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Can fungoid chitosan help to produce sulfite-free wines? Ten years of investigation on its antioxidant properties

Chitosan is a natural polymeric saccharide admitted by EU since 2011 for must and wine clarification, the reduction of some contaminants (e.g. ochratoxin A) and to prevent the development of wine microbialspoilage due to lactic acid bacteria or Dekkera/Brettanomyces yeasts.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

La Région Délimitée du Douro et le Vin de Porto — un terroir historique —

The viticulture of the Douro Delimited Region, one of the heirs of ancestral viticulture, traditionally empirical and of quality, while integrating modernity and contemporary tools, respects and has always present the principles on which it was developed.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.