Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

Abstract

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow and brown colors and oxidative off-odors, while its absence leads to the formation of reductive aromas. Even thought our knowledge about the reactions occurring during wine oxidation are very rich and detailed, the scientific data about the wine behaviour under reductive storage is limited. The main objective of this work was to study the metabolomic changes of eight red wines caused by the storage under different oxidative and reductive conditions.

Eight red wines were stored under eight different conditions, which include a) micro-oxygenators at 25 ºC for 3 months; b) anoxic atmosphere at 25 °C for 1, 2 and 3 months; c) anoxic atmosphere at 35 °C for 3 months; and d) control.  The following physicochemical analysis were made: LC-MS based metabolomic fingerprint, CIELab color, analyses of volatile sulfur compounds, redox potential, and basic oenological analysis. 

Changes of concentration of H2S and methanethiol (higher amount of free forms under reductive conditions) and redox potential results showed the reliability of the sample set. Color of samples evolved in a different way depending on the storage conditions, getting darker the reduced samples. Metabolomic study revealed reactions with SO2 and direct linked tannin-anthocyanin (T-A) adducts were favoured under anoxia but in the presence of oxygen, reactions with acetaldehyde and ethyl-linked T-A and tannin-tannin (adducts) were the favoured. The reaction mechanism of these reactions favoured in absence of oxygen could explain the observed changes during reductive storage.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ignacio Ontañón1, Diego Sánchez1, Vania Sáez2, Fulvio Mattivi2,3, Vicente Ferreira1, Panagiotis Arapitsas2

Laboratorio de Análisis del Aroma y Enología. Departamento de Química Analítica. Facultad de Ciencias. Instituto Agroalimentario de Aragón –IA2- (Universidad de Zaragoza-CITA). C/ Pedro Cerbuna, 12. 50009. Zaragoza, Spain.
Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

How to transform the odor of a white wine into a red wine? Color it red!

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.