Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

Abstract

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow and brown colors and oxidative off-odors, while its absence leads to the formation of reductive aromas. Even thought our knowledge about the reactions occurring during wine oxidation are very rich and detailed, the scientific data about the wine behaviour under reductive storage is limited. The main objective of this work was to study the metabolomic changes of eight red wines caused by the storage under different oxidative and reductive conditions.

Eight red wines were stored under eight different conditions, which include a) micro-oxygenators at 25 ºC for 3 months; b) anoxic atmosphere at 25 °C for 1, 2 and 3 months; c) anoxic atmosphere at 35 °C for 3 months; and d) control.  The following physicochemical analysis were made: LC-MS based metabolomic fingerprint, CIELab color, analyses of volatile sulfur compounds, redox potential, and basic oenological analysis. 

Changes of concentration of H2S and methanethiol (higher amount of free forms under reductive conditions) and redox potential results showed the reliability of the sample set. Color of samples evolved in a different way depending on the storage conditions, getting darker the reduced samples. Metabolomic study revealed reactions with SO2 and direct linked tannin-anthocyanin (T-A) adducts were favoured under anoxia but in the presence of oxygen, reactions with acetaldehyde and ethyl-linked T-A and tannin-tannin (adducts) were the favoured. The reaction mechanism of these reactions favoured in absence of oxygen could explain the observed changes during reductive storage.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ignacio Ontañón1, Diego Sánchez1, Vania Sáez2, Fulvio Mattivi2,3, Vicente Ferreira1, Panagiotis Arapitsas2

Laboratorio de Análisis del Aroma y Enología. Departamento de Química Analítica. Facultad de Ciencias. Instituto Agroalimentario de Aragón –IA2- (Universidad de Zaragoza-CITA). C/ Pedro Cerbuna, 12. 50009. Zaragoza, Spain.
Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Brettanomyces bruxellensis and off-odours: genetic and proteomic approaches to unravel the molecular mechanism of ethyl-phenols production

Brettanomyces/Dekkera yeasts in wine are able to produce various spoilage compounds that are, at high concentration, detrimental to wine quality. The principal spoiler compounds associated with Brettanomyces spp. are vinyl and ethyl-phenols that are responsible for off- odours described as “animal”, “medicinal”, “sweaty leather”, “barnyard”, “spicy” and “clove-like”.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF).

On quality assurance of winemaking components

This report examines product quality assurance issues arising when technological aids and food additives are utilized in winemaking.

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo.