Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

Abstract

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow and brown colors and oxidative off-odors, while its absence leads to the formation of reductive aromas. Even thought our knowledge about the reactions occurring during wine oxidation are very rich and detailed, the scientific data about the wine behaviour under reductive storage is limited. The main objective of this work was to study the metabolomic changes of eight red wines caused by the storage under different oxidative and reductive conditions.

Eight red wines were stored under eight different conditions, which include a) micro-oxygenators at 25 ºC for 3 months; b) anoxic atmosphere at 25 °C for 1, 2 and 3 months; c) anoxic atmosphere at 35 °C for 3 months; and d) control.  The following physicochemical analysis were made: LC-MS based metabolomic fingerprint, CIELab color, analyses of volatile sulfur compounds, redox potential, and basic oenological analysis. 

Changes of concentration of H2S and methanethiol (higher amount of free forms under reductive conditions) and redox potential results showed the reliability of the sample set. Color of samples evolved in a different way depending on the storage conditions, getting darker the reduced samples. Metabolomic study revealed reactions with SO2 and direct linked tannin-anthocyanin (T-A) adducts were favoured under anoxia but in the presence of oxygen, reactions with acetaldehyde and ethyl-linked T-A and tannin-tannin (adducts) were the favoured. The reaction mechanism of these reactions favoured in absence of oxygen could explain the observed changes during reductive storage.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ignacio Ontañón1, Diego Sánchez1, Vania Sáez2, Fulvio Mattivi2,3, Vicente Ferreira1, Panagiotis Arapitsas2

Laboratorio de Análisis del Aroma y Enología. Departamento de Química Analítica. Facultad de Ciencias. Instituto Agroalimentario de Aragón –IA2- (Universidad de Zaragoza-CITA). C/ Pedro Cerbuna, 12. 50009. Zaragoza, Spain.
Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

A 3-year zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out on a wine territory of about 500 ha.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Potential use of the yeast Starmerella bacillaris as a sustainable biocontrol agent against gray mold disease in viticulture

Pest biocontrol strategies are gaining attention as eco-friendly alternatives to the use of synthetic pesticides, including in viticulture.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.

Use of the stics crop model as a tool to inform vineyard zonages

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.