Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Abstract

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers. Countering such fraudulent activities requires the means to test and classify wine, but the task is considerable due to the complexity of wine. However, just as wine origin influences chemical and sensory profiles, indicators of wine provenance are naturally embedded in the chemical composition of wine. A range of methods of varying intricacy are available to analyse wine for authentication of variety or geographical origin. Instruments and techniques within the domain of research laboratories are not so practical or deployable in winery or supply chain settings, however. This is where spectroscopic methods are attractive, as they can be rapid, cost-effective and simple. In the search for such a method, we identified fluorescence spectroscopy, and more specifically, the collection of an excitation-emission matrix (EEM) that acts like a molecular fingerprint. Multivariate statistical modelling is then used in conjunction with the EEM data to develop classification models for wines from various regions. We have developed such a technique, using a relatively new type of machine learning algorithm known as extreme gradient boosting discriminant analysis. This unique approach, which can routinely achieve a level of accuracy of 100% in comparison to ICP-MS at an average of 85%, is being applied to a range of studies on Shiraz and Cabernet Sauvignon wines from different regions of Australia.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ranaweera K.R. Ranaweera1, Adam M. Gilmore2, Dimitra L. Capone1,3, Susan E.P. Bastian1,3, David W. Jeffery1,3*

1Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
2HORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States
3Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Wine growing regions global climate analysis

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries.

Resilience analysis in viticulture: an approach based on expert knowledge elicitation

The study aims to address the issue of resilience to climate change in viticulture through the adoption of the expert knowledge elicitation (EKE) approach.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

The Australian geographical indication process

The first white settlers arrived in Australia in 1788 and brought grape vine cuttings with them. As migration to Australia continued to grow during the XIX Century more and more vine cuttings, viticulturists and winemakers from Britain, France, Germany, ltaly, Switzerland and Yugoslavia founded their businesses.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.