Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Abstract

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers. Countering such fraudulent activities requires the means to test and classify wine, but the task is considerable due to the complexity of wine. However, just as wine origin influences chemical and sensory profiles, indicators of wine provenance are naturally embedded in the chemical composition of wine. A range of methods of varying intricacy are available to analyse wine for authentication of variety or geographical origin. Instruments and techniques within the domain of research laboratories are not so practical or deployable in winery or supply chain settings, however. This is where spectroscopic methods are attractive, as they can be rapid, cost-effective and simple. In the search for such a method, we identified fluorescence spectroscopy, and more specifically, the collection of an excitation-emission matrix (EEM) that acts like a molecular fingerprint. Multivariate statistical modelling is then used in conjunction with the EEM data to develop classification models for wines from various regions. We have developed such a technique, using a relatively new type of machine learning algorithm known as extreme gradient boosting discriminant analysis. This unique approach, which can routinely achieve a level of accuracy of 100% in comparison to ICP-MS at an average of 85%, is being applied to a range of studies on Shiraz and Cabernet Sauvignon wines from different regions of Australia.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ranaweera K.R. Ranaweera1, Adam M. Gilmore2, Dimitra L. Capone1,3, Susan E.P. Bastian1,3, David W. Jeffery1,3*

1Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
2HORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States
3Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Soil management with cover crops in irrigated vineyards: effects in vine microclimate (cv. Malbec) grown in a terroir of Agrelo (Luján de Cuyo)

L’objectif de cette recherche a été de déterminer les effets de l’enherbement dans le microclimat de la vigne. On a comparé cinq couvertures de cycle végétatif différent en ce qui concerne l’entretien du sol sans culture par application d’herbicides. L’étude a été developpée dans un vignoble cv. Malbec conduit en haute espalier, situé en a terroir á Agrelo, Luján de Cuyo, Mendoza, Argentine. On a déterminé des paramètres micro climatiques:

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.