Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Key odorants of french syrah wines from the northern rhone valley

Key odorants of french syrah wines from the northern rhone valley

Abstract

Little research has been undertaken to investigate the main contributors to the aroma of Syrah wines from the cool northern part of the Rhone valley despite the historical importance of this cultivar for this wine region. The aim of the present work was to study the key odorants of Crozes-Hermitage wines made from two vintages with distinct climatic conditions (cool in 2013, warm in 2015) using supercritical CO2 dearomatized (sCO2) wine as a matrix for reconstitution studies, and the Pivot profile sensory method for omission tests. The volatile composition of the two wines was first assessed through determination of 76 molecules. Then, the impact of four matrices (synthetic wines with 10% and 12.5% of ethanol, and dearomatized native wines through rotary evaporation or using sCO2) on the quality of the reconstitution was investigated. For both vintages, 35 molecules with OAV > 0.5 were identified in both wines, with rotundone and 3-sulfanylhexanol (3SH) enabling the strongest discrimination between the two vintages. Wine dearomatized using sCO2 was identified as the best matrix. The best models built using this matrix were composed of aroma compounds with OAV > 5 and OAV > 10 highlighting that this dearomatization approach can be valuable to reconstitute the aroma of wine using a small number of molecules. For the 2013 wine, the omission of rotundone and 2-furfurylthiol had the greatest impact on the olfactive profile for non-anosmic and anosmic panelists to rotundone, respectively. 3SH, whose omission decreased the rating of the “fruity” attribute, was identified as the main contributor to the aroma of Syrah wine produced in 2015.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Olivier GEFFROY1*, Marie MORÈRE2, Grégory PASQUIER1, Ricardo LOPEZ3 and Jean-Stéphane CONDORET4

1PPGV, Université de Toulouse, INP-PURPAN, 75 voie du TOEC, 31076 Toulouse Cedex 3, France
2CRITT GPTE, 4 Allée Émile Monso, 31030 Toulouse cedex 4, France
3LAAE, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
4LGC, UMR CNRS 5503, 4 Allée Émile Monso, 31030 Toulouse cedex 4, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.