Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Key odorants of french syrah wines from the northern rhone valley

Key odorants of french syrah wines from the northern rhone valley

Abstract

Little research has been undertaken to investigate the main contributors to the aroma of Syrah wines from the cool northern part of the Rhone valley despite the historical importance of this cultivar for this wine region. The aim of the present work was to study the key odorants of Crozes-Hermitage wines made from two vintages with distinct climatic conditions (cool in 2013, warm in 2015) using supercritical CO2 dearomatized (sCO2) wine as a matrix for reconstitution studies, and the Pivot profile sensory method for omission tests. The volatile composition of the two wines was first assessed through determination of 76 molecules. Then, the impact of four matrices (synthetic wines with 10% and 12.5% of ethanol, and dearomatized native wines through rotary evaporation or using sCO2) on the quality of the reconstitution was investigated. For both vintages, 35 molecules with OAV > 0.5 were identified in both wines, with rotundone and 3-sulfanylhexanol (3SH) enabling the strongest discrimination between the two vintages. Wine dearomatized using sCO2 was identified as the best matrix. The best models built using this matrix were composed of aroma compounds with OAV > 5 and OAV > 10 highlighting that this dearomatization approach can be valuable to reconstitute the aroma of wine using a small number of molecules. For the 2013 wine, the omission of rotundone and 2-furfurylthiol had the greatest impact on the olfactive profile for non-anosmic and anosmic panelists to rotundone, respectively. 3SH, whose omission decreased the rating of the “fruity” attribute, was identified as the main contributor to the aroma of Syrah wine produced in 2015.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Olivier GEFFROY1*, Marie MORÈRE2, Grégory PASQUIER1, Ricardo LOPEZ3 and Jean-Stéphane CONDORET4

1PPGV, Université de Toulouse, INP-PURPAN, 75 voie du TOEC, 31076 Toulouse Cedex 3, France
2CRITT GPTE, 4 Allée Émile Monso, 31030 Toulouse cedex 4, France
3LAAE, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
4LGC, UMR CNRS 5503, 4 Allée Émile Monso, 31030 Toulouse cedex 4, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.

Evolution of astringency during the ripening of red grapes through the tribological astringency index

The phenolic composition of red grapes is one of the most important quality parameters.