Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

Abstract

This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment. Total phenols, proanthocyanidins, ethanol, reducing sugars, pH, titratable and volatile acidity were determined. PCA results highlighted different sensory features of the 10 wine types. ANOVAs (p < 0.05) showed that olfactory cues might play modulation effects on the perception of in-mouth sensations with 7 (harsh,unripe,dynamic,complex, surface smoothness, sweet, and bitter) out of 10 oral descriptors significantly affected by odours. Three weak but significant positive correlations (Pearson, p < 0.0001) were statistically found and supported in a cognitive dimension: spicy and complex; dehydrated fruits and drying; vegetal and unripe. In the absence of volatiles, correlation coefficients between sensory and chemical parameters mostly increased. Proanthocyanidins correlated well with drying and dynamic astringency, showing highest coefficients (r > 0.7) in absence of olfactory–oral interactions. Unripe astringency did not correlate with polyphenols supporting the idea that this sub-quality is a multisensory feeling greatly impacted by odorants. Results support the significance of cross-modal interactions during red wine tasting, confirming previous findings and adding new insights on astringency sub-qualities and their predictive parameters.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Paola Piombino1, Elisabetta Pittari1, Panagiotis Arapitsas2, Andrea Curioni3, Vincenzo Gerbi4, Giuseppina Paola Parpinello5, Maurizio Ugliano6, Luigi Moio1

1 Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy
2 Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, 38010 Trentino, Italy
3 Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Italy
4 Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, 10095 Turin, Italy
5 Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
6 Department of Biotechnology, University of Verona, 37029 San Floriano (VR), Italy 

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines. METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

The risk of wildfires is increasing as the frequency and severity of drought and heat waves continue to rise. Wildfires are associated with the combustion of plant materials and emit smoke. In the atmosphere, smoke may spread readily across large areas. Smoke is composed of solid and liquid phase particulates and gases and has been identified as a causal agent of “smoke taint” in wine. On a smoky day, the intensity of direct light decreases because these particulates scatter sunlight. Even though this effect is frequently assumed to decrease plant photosynthesis, this assumption ignores the potential changes in diffuse light and may be based on scant evidence.