Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

Abstract

Anthocyanins are responsible for the red wine color and their ability to condense with tannins is considered as a contributor in astringency reduction. However, recent studies showed the possibility of anthocyanins to influence directly the in-mouth perception of wines.

In this study, grape anthocyanin extracts (TA) were fractionated using Centrifugal Partition Chromatography (CPC) and preparative HPLC in three fractions: glucoside (GF), acetylated (AF) and cinnamoylated (CF) anthocyanins. Sensory properties of these fractions were investigated by chemical analysis as reactivity towards salivary proteins and by tasting sessions as best estimated thresholds (BET) in wine-like solutions.

Anthocyanins reacted with salivary proteins in different extent depending on their acylation, with CF being the most reactive fraction. The BETs obtained were 297, 68, and 58 mg/L for GF, AF, and CF, respectively, while the unfractionated extract (TA) resulted in a BET of 255 mg/L.

In the next step, different sensory approaches (triangle test, check-all-that apply, descriptive analysis) were attempted to compare TA and fractions to polyphenols extracted from grape skins and seeds. The investigated sensations were bitterness, overall astringency and its sub-qualities, which were divided in sensation during (particulates) and after (surface smoothness) expectoration. TA and GF were described at wine range concentration as “velvety” and “chalky”. The addition of GF to skin and seed extract modified in-mouth perceptions differently: enriched seed extract was perceived more astringent, whereas enriched skin extract showed lower surface smoothness. Therefore, the presence of anthocyanins may be able to modify in-mouth sensations, influencing astringency and its sub-qualities.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

M.A. Paissoni1,2,3, , P. Waffo-Teguo2,3, W. Ma2,3,4, M. Jourdes2,3, S. Giacosa1, S. Río Segade1, L. Rolle1, P-L. Teissedre2,3

Dipartimento di Scienze Agrarie, Forestali e Alimentari. Università degli Studi di Torino, Grugliasco, Italy
2 ISVV, EA 4577 Oenologie, F-33140, Université de Bordeaux, Villenave d’Ornon, France
3 INRAE, ISVV, USC 1366 Oenologie, F-33140, Villenave d’Ornon, France
4 Wine School, Ningxia University, Yinchuan, Ningxia, 750021, P.R. China

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Caractérisation et gestion de la maturation par terroir en Champagne

Pour prévoir et gérer chaque année les principales caractéristiques de la maturation en Champagne, le CIVC (Comité Interprofessionnel du Vin de Champagne) a développé un ensemble de moyens de prévision et d’information très performants qui permettent aux différents acteurs de la filière viti-vinicole de prendre en compte ces informations à l’échelle de chaque terroir communal pour la recherche d’une qualité optimale.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Hormone metabolism regulates fruit maturation in a slow ripening grape genotype

Context and purpose of the study. Rising temperatures and prolonged heat accelerate berry sugar accumulation in advance of the accumulation of compounds responsible for aroma, colour and mouthfeel.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

La balance hydrique explique davantage la diversité intravariétale du titre alcoométrique du Merlot que l’accumulation des sucres

Dans le cadre de TerclimPro 2025, Charles Romieu a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8506