Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

Abstract

Anthocyanins are responsible for the red wine color and their ability to condense with tannins is considered as a contributor in astringency reduction. However, recent studies showed the possibility of anthocyanins to influence directly the in-mouth perception of wines.

In this study, grape anthocyanin extracts (TA) were fractionated using Centrifugal Partition Chromatography (CPC) and preparative HPLC in three fractions: glucoside (GF), acetylated (AF) and cinnamoylated (CF) anthocyanins. Sensory properties of these fractions were investigated by chemical analysis as reactivity towards salivary proteins and by tasting sessions as best estimated thresholds (BET) in wine-like solutions.

Anthocyanins reacted with salivary proteins in different extent depending on their acylation, with CF being the most reactive fraction. The BETs obtained were 297, 68, and 58 mg/L for GF, AF, and CF, respectively, while the unfractionated extract (TA) resulted in a BET of 255 mg/L.

In the next step, different sensory approaches (triangle test, check-all-that apply, descriptive analysis) were attempted to compare TA and fractions to polyphenols extracted from grape skins and seeds. The investigated sensations were bitterness, overall astringency and its sub-qualities, which were divided in sensation during (particulates) and after (surface smoothness) expectoration. TA and GF were described at wine range concentration as “velvety” and “chalky”. The addition of GF to skin and seed extract modified in-mouth perceptions differently: enriched seed extract was perceived more astringent, whereas enriched skin extract showed lower surface smoothness. Therefore, the presence of anthocyanins may be able to modify in-mouth sensations, influencing astringency and its sub-qualities.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

M.A. Paissoni1,2,3, , P. Waffo-Teguo2,3, W. Ma2,3,4, M. Jourdes2,3, S. Giacosa1, S. Río Segade1, L. Rolle1, P-L. Teissedre2,3

Dipartimento di Scienze Agrarie, Forestali e Alimentari. Università degli Studi di Torino, Grugliasco, Italy
2 ISVV, EA 4577 Oenologie, F-33140, Université de Bordeaux, Villenave d’Ornon, France
3 INRAE, ISVV, USC 1366 Oenologie, F-33140, Villenave d’Ornon, France
4 Wine School, Ningxia University, Yinchuan, Ningxia, 750021, P.R. China

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.