Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Abstract

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control. Two concentrations of Yeast Assimilable Nitrogen (YAN) and DAP (diammonium phosphate) were added to the must (150mg/L and 250mg/L) in order to evaluate the effcet of nitrogen content on the final wine quality. Both analytical chemical methods (HPLC, GC-MS, classical eonological methods) and sensory analysis were employed to assess the chemical composition of the wines and their organoleptic character. In addition fermentation kinetics were monitored throughout the experiment. By the second day of fermentation all three strains had consumed approximately 75% of amino acids. Differences among strains were observed concerning inorganic nitrogen requirements. Sa strain consumed it faster and was the first to compete fermentation independently from the level of added YAN. The commercial strain was characterized by the highest concentration of residual sugars, followed by Sb and Sa. Alcohol content ranged from 12.8-13.1% vol. Sb and the commercial one produced significant higher amounts of glycerol (about 0.7g/L), especially in the case of lower YAN. Sb also produced significant higher amounts of higher alcohols (1.9-fold) and ketones (5.6-fold) but significant lower amounts of esters (1.2-fold) in comparison with the commercial strain. Sa was characterized by significant higher concentrations of fatty acids (2.1-fold) and lower acetic acid (1.6-fold) production. No statistically important differences were observed in the oligomeric phenolic compound content of the samples. Both indigenous strains scored better results in overall aroma quality, and more specifically in “fruity”, “floral” descriptors compared with control. They were also preferred over the commercial strain as far as mouthfeel, body and acidity are concerned. The evaluation of both chemical and sensory data indicated the potential of the indeginous starins for commercial wine production with unique characteristics and high quality.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stefania Christofi, M.Dimopoulou1 Α, Papanikolaou1 G.J, M.Sadoveanu Alley

1 Department of Food Science & Human Nutrition, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Terpou1 S, Nychas1  C.I., Bogdan2 Romania Academy – Iasi Branch, Research Centre for Oenology, Iasi 700490, Romania V., Cotea3 University of Agricultural Sciences and Veterinary Medicine Iaşi, 3 M. Sadoveanu Alley, Iaşi, 700490, Romania Kallithraka, S1.

Contact the author

Keywords

aminoacids, fermentation kinetics, saccharomyces cerevisiae, volatile compounds

Citation

Related articles…

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Aromatic maturity is a cornerstone of terroir expression in red wine

In this video recording of the IVES science meeting 2023, Stéphanie Marchand (University of Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, Villenave d’Ornon, France) speaks about the aromatic maturity as a cornerstone of terroir expression in red wine. This presentation is based on an original article accessible for free on OENO One.

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.