Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Abstract

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control. Two concentrations of Yeast Assimilable Nitrogen (YAN) and DAP (diammonium phosphate) were added to the must (150mg/L and 250mg/L) in order to evaluate the effcet of nitrogen content on the final wine quality. Both analytical chemical methods (HPLC, GC-MS, classical eonological methods) and sensory analysis were employed to assess the chemical composition of the wines and their organoleptic character. In addition fermentation kinetics were monitored throughout the experiment. By the second day of fermentation all three strains had consumed approximately 75% of amino acids. Differences among strains were observed concerning inorganic nitrogen requirements. Sa strain consumed it faster and was the first to compete fermentation independently from the level of added YAN. The commercial strain was characterized by the highest concentration of residual sugars, followed by Sb and Sa. Alcohol content ranged from 12.8-13.1% vol. Sb and the commercial one produced significant higher amounts of glycerol (about 0.7g/L), especially in the case of lower YAN. Sb also produced significant higher amounts of higher alcohols (1.9-fold) and ketones (5.6-fold) but significant lower amounts of esters (1.2-fold) in comparison with the commercial strain. Sa was characterized by significant higher concentrations of fatty acids (2.1-fold) and lower acetic acid (1.6-fold) production. No statistically important differences were observed in the oligomeric phenolic compound content of the samples. Both indigenous strains scored better results in overall aroma quality, and more specifically in “fruity”, “floral” descriptors compared with control. They were also preferred over the commercial strain as far as mouthfeel, body and acidity are concerned. The evaluation of both chemical and sensory data indicated the potential of the indeginous starins for commercial wine production with unique characteristics and high quality.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stefania Christofi, M.Dimopoulou1 Α, Papanikolaou1 G.J, M.Sadoveanu Alley

1 Department of Food Science & Human Nutrition, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Terpou1 S, Nychas1  C.I., Bogdan2 Romania Academy – Iasi Branch, Research Centre for Oenology, Iasi 700490, Romania V., Cotea3 University of Agricultural Sciences and Veterinary Medicine Iaşi, 3 M. Sadoveanu Alley, Iaşi, 700490, Romania Kallithraka, S1.

Contact the author

Keywords

aminoacids, fermentation kinetics, saccharomyces cerevisiae, volatile compounds

Citation

Related articles…

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for