Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Abstract

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control. Two concentrations of Yeast Assimilable Nitrogen (YAN) and DAP (diammonium phosphate) were added to the must (150mg/L and 250mg/L) in order to evaluate the effcet of nitrogen content on the final wine quality. Both analytical chemical methods (HPLC, GC-MS, classical eonological methods) and sensory analysis were employed to assess the chemical composition of the wines and their organoleptic character. In addition fermentation kinetics were monitored throughout the experiment. By the second day of fermentation all three strains had consumed approximately 75% of amino acids. Differences among strains were observed concerning inorganic nitrogen requirements. Sa strain consumed it faster and was the first to compete fermentation independently from the level of added YAN. The commercial strain was characterized by the highest concentration of residual sugars, followed by Sb and Sa. Alcohol content ranged from 12.8-13.1% vol. Sb and the commercial one produced significant higher amounts of glycerol (about 0.7g/L), especially in the case of lower YAN. Sb also produced significant higher amounts of higher alcohols (1.9-fold) and ketones (5.6-fold) but significant lower amounts of esters (1.2-fold) in comparison with the commercial strain. Sa was characterized by significant higher concentrations of fatty acids (2.1-fold) and lower acetic acid (1.6-fold) production. No statistically important differences were observed in the oligomeric phenolic compound content of the samples. Both indigenous strains scored better results in overall aroma quality, and more specifically in “fruity”, “floral” descriptors compared with control. They were also preferred over the commercial strain as far as mouthfeel, body and acidity are concerned. The evaluation of both chemical and sensory data indicated the potential of the indeginous starins for commercial wine production with unique characteristics and high quality.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stefania Christofi, M.Dimopoulou1 Α, Papanikolaou1 G.J, M.Sadoveanu Alley

1 Department of Food Science & Human Nutrition, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Terpou1 S, Nychas1  C.I., Bogdan2 Romania Academy – Iasi Branch, Research Centre for Oenology, Iasi 700490, Romania V., Cotea3 University of Agricultural Sciences and Veterinary Medicine Iaşi, 3 M. Sadoveanu Alley, Iaşi, 700490, Romania Kallithraka, S1.

Contact the author

Keywords

aminoacids, fermentation kinetics, saccharomyces cerevisiae, volatile compounds

Citation

Related articles…

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector.

Carbon footprint in Austrian viticulture – Evaluation of the main polluters and possible solutions in entire the production chain

The sustainability certification ‘nachhaltig austria’ (www.sustainableaustria.com) has been offered to austrian wineries in an online version for 10 years and over 25% of the austrian wine-growing area is now certified. Since the 2022 harvest, ‘nachhaltig austria’ has automatically calculated the carbon footprint for each winery, per hectare of vineyard, per litre of bulk wine and per 0.75-litre bottle (poelz, w. And rosner, f.g. 2023). In last year’s publications and numerous presentations at national and international level, topics such as refilling glass bottles, lightweight glass bottles, renewable energy, … Etc.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.