Macrowine 2021
IVES 9 IVES Conference Series 9 Expanding the biotechnological potential of M. pulcherrima/fructicola clade for wine-related applications

Expanding the biotechnological potential of M. pulcherrima/fructicola clade for wine-related applications

Abstract

AIM: Strains belonging to M. pulcherrima/fructicola clade are frequently isolated from flowers, fruits and grape musts, and exhibit a broad spectrum of enzymatic activities and antimicrobial potential (Morata et al., 2019; Sipiczki, 2020; Vicente et al. 2020). By reason of these features, selected strains of this clade have been proposed as non-Saccharomyces starter cultures for winemaking. In this study, with a view to valorise the biotechnological potential of these strains, a new Metschnikowia sp. strain, DBT012, was selected for application in vinification trials of Valpolicella’s fresh and withered typical grapes for reduction of SO2addition and increase of aromatic complexity. Further, in the framework of the investigation on the biodiversity of a collection of strains, distinct pulcherrimin-producing isolates from spontaneous fermentation and grapes were putatively recognized as Metschnikowia spp. and selected for genotypic and phenotypic characterisation.

METHODS: Lyophilised cultures of the reference strain DBT012 were tested in pilot-scale vinifications (mixed-cultures with S. cerevisiae). The isolates were characterised based on enzymatic activities (e.g., sulphite-reductase and beta-glucosidase activities) and growth under different wine-related stress conditions (e.g., ethanol, high sugar content). Genetic fingerprinting techniques (e.g., (GTG)5 and microsatellite) were performed for de-replication of isolates and strain typing. Whole-genome sequencing of the reference strain was carried out to analyse the correlation between genotype and phenotype, and comparative analyses with available type strains were performed to deepen the taxonomic aspects and molecularly identify this strain.

RESULTS: Use of Metschnikowia sp. DBT012 reduced the acetaldehyde content in wines, and positively influenced the wine aroma. About 50 Metschnikowia strains were characterised, which displayed a significant phenotypic diversity in terms of β-glucosidase and esterase activities, H2S production and growth at high sugar concentrations. The relationship of those features with genotypic and genomic distinctiveness of the reference strain was highlighted.

CONCLUSIONS:

The well-characterised thematic collection of strains belonging to M. pulcherrima/fructicola clade presented here constitutes an important reservoir of biodiversity for applications in different wine-related scenarios.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Eleonora Troiano,Renato, LEAL BINATI, Ilaria, CHECCHIA, Ilaria, LARINI, Veronica, GATTO, Gianluca, VENERI, Giacomo, ZAPPAROLI, Vittorio, CAPOZZI, Elisa, SALVETTI, Sandra, TORRIANI, Giovanna, E., FELIS

Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy , Department of Biotechnology, University of Verona, Italy, Institute of Sciences of Food Production, National Research Council (CNR), Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

metschnikowia, wine microbiology, biodiversity, biotechnological potential

Citation

Related articles…

The developement of vineyard zonation and demarcation in South Africa

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement.

Preplant fumigation only temporarily reduces Northern root-knot nematode

Management of plant-parasitic nematodes is typically focused on preplant fumigation, especially in a vineyard replant scenario. While the data are clear that this practice reduces nematodes immediately after application, which is useful in annually-cropped systems, does it have staying power in perennial cropping systems? The northern root-knot nematode Meloidogyne hapla reduces the overall lifespan and productivity of vineyards, but it does so over a long time period (slow, chronic decline). In two different commercial own-rooted V. vinifera vineyards, both undergoing vineyard replanting, we explored whether preplant fumigation reduced M. hapla densities in soils immediately after application. At one of these locations, we have explored the long-term effect of fumigation by monitoring the site for seven years post fumigation.

Crop load management of newly planted Pinot gris grown in warm climate of California

San Joaquin Valley accounts for 68% of Pinot gris acreage and produces 83% of Pinot gris wine in California. Strong demand for Pinot gris has prompted growers to restrict the nonbearing period

Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

To assess the relationship between the reported low-stability of Tannat colour during wine storage and its pigment composition and evolution

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).