Macrowine 2021
IVES 9 IVES Conference Series 9 Expanding the biotechnological potential of M. pulcherrima/fructicola clade for wine-related applications

Expanding the biotechnological potential of M. pulcherrima/fructicola clade for wine-related applications

Abstract

AIM: Strains belonging to M. pulcherrima/fructicola clade are frequently isolated from flowers, fruits and grape musts, and exhibit a broad spectrum of enzymatic activities and antimicrobial potential (Morata et al., 2019; Sipiczki, 2020; Vicente et al. 2020). By reason of these features, selected strains of this clade have been proposed as non-Saccharomyces starter cultures for winemaking. In this study, with a view to valorise the biotechnological potential of these strains, a new Metschnikowia sp. strain, DBT012, was selected for application in vinification trials of Valpolicella’s fresh and withered typical grapes for reduction of SO2addition and increase of aromatic complexity. Further, in the framework of the investigation on the biodiversity of a collection of strains, distinct pulcherrimin-producing isolates from spontaneous fermentation and grapes were putatively recognized as Metschnikowia spp. and selected for genotypic and phenotypic characterisation.

METHODS: Lyophilised cultures of the reference strain DBT012 were tested in pilot-scale vinifications (mixed-cultures with S. cerevisiae). The isolates were characterised based on enzymatic activities (e.g., sulphite-reductase and beta-glucosidase activities) and growth under different wine-related stress conditions (e.g., ethanol, high sugar content). Genetic fingerprinting techniques (e.g., (GTG)5 and microsatellite) were performed for de-replication of isolates and strain typing. Whole-genome sequencing of the reference strain was carried out to analyse the correlation between genotype and phenotype, and comparative analyses with available type strains were performed to deepen the taxonomic aspects and molecularly identify this strain.

RESULTS: Use of Metschnikowia sp. DBT012 reduced the acetaldehyde content in wines, and positively influenced the wine aroma. About 50 Metschnikowia strains were characterised, which displayed a significant phenotypic diversity in terms of β-glucosidase and esterase activities, H2S production and growth at high sugar concentrations. The relationship of those features with genotypic and genomic distinctiveness of the reference strain was highlighted.

CONCLUSIONS:

The well-characterised thematic collection of strains belonging to M. pulcherrima/fructicola clade presented here constitutes an important reservoir of biodiversity for applications in different wine-related scenarios.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Eleonora Troiano,Renato, LEAL BINATI, Ilaria, CHECCHIA, Ilaria, LARINI, Veronica, GATTO, Gianluca, VENERI, Giacomo, ZAPPAROLI, Vittorio, CAPOZZI, Elisa, SALVETTI, Sandra, TORRIANI, Giovanna, E., FELIS

Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy , Department of Biotechnology, University of Verona, Italy, Institute of Sciences of Food Production, National Research Council (CNR), Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

metschnikowia, wine microbiology, biodiversity, biotechnological potential

Citation

Related articles…

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work

Effect of different winemaking practices on chemical composition, aroma profile and sensory perception of ribolla gialla sparkling wines

This study aims at evaluating the effects of different refermentation methods (Martinotti/Charmat vs. Classic) on the chemical composition, aroma profile and sensory characteristics of Ribolla Gialla sparkling wines; furthermore, certain winemaking practices (skin contact and use of pectolytic enzymes) were investigated considering the extraction of varietal aromas and aroma precursors. METHODS: Sparkling wines were produced at pilot-plant scale. Concerning refermentation methods, traditional Martinotti (MB – 30 days length), extended Martinotti (ML) with 4 months of aging on lees and Classic method (CL) with 11 months of aging on lees were compared; in a second trial, skin contact (MM), enzyme addition on must also subjected to maceration (ME), and enzyme addition on base wine (VE) were evaluated. All experimental trials were performed in triplicate. Basic chemical composition, varietal (terpenes and C13-norisoprenoids in free and bound form) and non-varietal aroma compounds were evaluated by LLE-GCMS analysis; finally, sensory analysis was also performed, by descriptive testing.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology