Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Abstract

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines. However, low fermentation temperatures usually produce an early stop in the fermentation. Hence, the employment of new yeast strains able to operate at low temperatures could solve this problem, giving rise to different characteristics in wines. The Antarctic Continent is a crucial source for the isolation of new microorganisms and bioactive metabolites, given the competitive conditions of this environment with low temperatures, scarce carbon sources and high UV radiation. Considering this, the objective of this study was the isolation and characterization of fermentative yeast from the Antarctic Continent with potential for use in the wine industry.

METHODOLOGY: Six soil samples collected in Fildes Bay, west of King George Island and three soil samples from King George Island were processed for yeast isolation. Samples were suspended in sterile water and dilutions of each suspension were inoculated onto yeast medium (YM) agar plates with antibiotics, which were then incubated at 4, 10, and 18 °C until visible colony growth. Colonies with a non-filamentous appearance were selected, which were reseeded on YM agar without antibiotics. Alcohol tolerance was performed using concentrations of 3, 6, or 9% alcohol. Later on, sugar tolerance was analyzed using fructose and glucose in a 1:1 proportion; with 5, 10, 15, 20, or 25% of sugar in the medium. Those isolates with microscopic characteristics of interest were selected to determine fermentative activity in vitro using a simple colorimetric assay with phenol red, as a pH indicator. To differentiate the isolates, and discard replicates, a fingerprinting assay with arbitrary primers was performed. Identification of the isolates was carried out using PCR and ITS region primers with BLAST bioinformatics tools.

RESULTS: Nine soil samples collected from the Antarctica were processed for yeast isolation. We obtained 125 yeasts from the soil samples, with a growth temperature of 10ºC. Overall, 25 yeasts have fermentative activity and are able to tolerate a culture medium with at least 20% glucose and up to 6% of ethanol. The isolates were also characterized by optical microscopy and fingerprinting using PCR with arbitrary primers to discard identical strains and allowed us to discriminate 10 unique strains with fermentative capacity from the 25 isolates. To determine the identity of the isolated yeasts, the amplification and sequence of the 18S RNA was performed.

CONCLUSION:

The Antarctic continent has proven to be a source of fermentative yeasts with high potential for their use in the wine industry.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Laura Navarro, Cristina Úbeda, Mariona Gil i Cortiella, Ana Gutierrez, Gino Corsini, Nancy Calisto

Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile., Nutrition and Food Sciences Department, Faculty of Pharmacy, University of Seville, Seville, Spain. Applied Chemical Sciences Institute, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Chemical engineering department, Faculty of Engineering, Magallanes University, Punta Arenas, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile.

Contact the author

Keywords

antarctic yeast, low temperature fermentation, yeast isolation, yeast characterization

Citation

Related articles…

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009).

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.