Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Abstract

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines. However, low fermentation temperatures usually produce an early stop in the fermentation. Hence, the employment of new yeast strains able to operate at low temperatures could solve this problem, giving rise to different characteristics in wines. The Antarctic Continent is a crucial source for the isolation of new microorganisms and bioactive metabolites, given the competitive conditions of this environment with low temperatures, scarce carbon sources and high UV radiation. Considering this, the objective of this study was the isolation and characterization of fermentative yeast from the Antarctic Continent with potential for use in the wine industry.

METHODOLOGY: Six soil samples collected in Fildes Bay, west of King George Island and three soil samples from King George Island were processed for yeast isolation. Samples were suspended in sterile water and dilutions of each suspension were inoculated onto yeast medium (YM) agar plates with antibiotics, which were then incubated at 4, 10, and 18 °C until visible colony growth. Colonies with a non-filamentous appearance were selected, which were reseeded on YM agar without antibiotics. Alcohol tolerance was performed using concentrations of 3, 6, or 9% alcohol. Later on, sugar tolerance was analyzed using fructose and glucose in a 1:1 proportion; with 5, 10, 15, 20, or 25% of sugar in the medium. Those isolates with microscopic characteristics of interest were selected to determine fermentative activity in vitro using a simple colorimetric assay with phenol red, as a pH indicator. To differentiate the isolates, and discard replicates, a fingerprinting assay with arbitrary primers was performed. Identification of the isolates was carried out using PCR and ITS region primers with BLAST bioinformatics tools.

RESULTS: Nine soil samples collected from the Antarctica were processed for yeast isolation. We obtained 125 yeasts from the soil samples, with a growth temperature of 10ºC. Overall, 25 yeasts have fermentative activity and are able to tolerate a culture medium with at least 20% glucose and up to 6% of ethanol. The isolates were also characterized by optical microscopy and fingerprinting using PCR with arbitrary primers to discard identical strains and allowed us to discriminate 10 unique strains with fermentative capacity from the 25 isolates. To determine the identity of the isolated yeasts, the amplification and sequence of the 18S RNA was performed.

CONCLUSION:

The Antarctic continent has proven to be a source of fermentative yeasts with high potential for their use in the wine industry.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Laura Navarro, Cristina Úbeda, Mariona Gil i Cortiella, Ana Gutierrez, Gino Corsini, Nancy Calisto

Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile., Nutrition and Food Sciences Department, Faculty of Pharmacy, University of Seville, Seville, Spain. Applied Chemical Sciences Institute, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Chemical engineering department, Faculty of Engineering, Magallanes University, Punta Arenas, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile.

Contact the author

Keywords

antarctic yeast, low temperature fermentation, yeast isolation, yeast characterization

Citation

Related articles…

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

Fully automated non-targeted GC-MS data analysis

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition.