Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

Abstract

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines. However, low fermentation temperatures usually produce an early stop in the fermentation. Hence, the employment of new yeast strains able to operate at low temperatures could solve this problem, giving rise to different characteristics in wines. The Antarctic Continent is a crucial source for the isolation of new microorganisms and bioactive metabolites, given the competitive conditions of this environment with low temperatures, scarce carbon sources and high UV radiation. Considering this, the objective of this study was the isolation and characterization of fermentative yeast from the Antarctic Continent with potential for use in the wine industry.

METHODOLOGY: Six soil samples collected in Fildes Bay, west of King George Island and three soil samples from King George Island were processed for yeast isolation. Samples were suspended in sterile water and dilutions of each suspension were inoculated onto yeast medium (YM) agar plates with antibiotics, which were then incubated at 4, 10, and 18 °C until visible colony growth. Colonies with a non-filamentous appearance were selected, which were reseeded on YM agar without antibiotics. Alcohol tolerance was performed using concentrations of 3, 6, or 9% alcohol. Later on, sugar tolerance was analyzed using fructose and glucose in a 1:1 proportion; with 5, 10, 15, 20, or 25% of sugar in the medium. Those isolates with microscopic characteristics of interest were selected to determine fermentative activity in vitro using a simple colorimetric assay with phenol red, as a pH indicator. To differentiate the isolates, and discard replicates, a fingerprinting assay with arbitrary primers was performed. Identification of the isolates was carried out using PCR and ITS region primers with BLAST bioinformatics tools.

RESULTS: Nine soil samples collected from the Antarctica were processed for yeast isolation. We obtained 125 yeasts from the soil samples, with a growth temperature of 10ºC. Overall, 25 yeasts have fermentative activity and are able to tolerate a culture medium with at least 20% glucose and up to 6% of ethanol. The isolates were also characterized by optical microscopy and fingerprinting using PCR with arbitrary primers to discard identical strains and allowed us to discriminate 10 unique strains with fermentative capacity from the 25 isolates. To determine the identity of the isolated yeasts, the amplification and sequence of the 18S RNA was performed.

CONCLUSION:

The Antarctic continent has proven to be a source of fermentative yeasts with high potential for their use in the wine industry.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Laura Navarro, Cristina Úbeda, Mariona Gil i Cortiella, Ana Gutierrez, Gino Corsini, Nancy Calisto

Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile., Nutrition and Food Sciences Department, Faculty of Pharmacy, University of Seville, Seville, Spain. Applied Chemical Sciences Institute, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile. Chemical engineering department, Faculty of Engineering, Magallanes University, Punta Arenas, Chile. Biomedical Sciences Institute, Health Sciences Faculty, Autonomous University of Chile, Santiago, Chile.

Contact the author

Keywords

antarctic yeast, low temperature fermentation, yeast isolation, yeast characterization

Citation

Related articles…

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences.

Climatic zoning and viticulture in Galicia (North West Spain)

Galicia is situated in the NW of the Iberian Peninsula, just north of Portugal and so sharing a mild, maritime climate, certain vine species and a number of long-standing viticultural traditions. In Galicia about 18,000 has are dedicated to wine growing, of which roughly half (46%) correspond to the 6 DOs in the area.

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Study of varietal wines from the qualified origin denomination Rioja (Spain): analysis of wine colour, polysaccharides, polyphenols and biogenic amines and amino acides 

The cultivar with a greater oenological potential was ‘Monastel’, which showed overall better values than ‘Tempranillo’ in colour intensity, total polyphenol index, wine colour, total anthocyanins, resveratrol and gallic acid.