Macrowine 2021
IVES 9 IVES Conference Series 9 Changes in grape-associated microbiome as a consequence of post-harvest withering

Changes in grape-associated microbiome as a consequence of post-harvest withering

Abstract

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1]. The microbiome associated with withering grapes has been showed to be profoundly linked with the process and its results[2,3]. The main aims of this study were to (a) provide detailed information on bacterial and fungal communities evolution throughout the grapes withering process, and (b) perform a comparative study between two dehydration methods, regarding the associated microbiomes.

METHODS: Samples of withering grapes were collected in the Italian viticultural zone Valpolicella, where the renowned wine Amarone is produced using non-botrytized withered grapes of Corvina variety. Two different post-harvest conditions were analyzed (non-controlled and controlled withering environment); grapes coming from two vineyards (close but differing for soil characteristics) were considered, during 2 subsequent vintages. To map the microbiome during withering, Next-Generation Sequencing (NGS) was employed[4]: the progression of fungal and bacterial species was characterized through metabarcoding (ITS and 16s) at 4 different time points (from 0 to 30% of weight loss).

RESULTS: No significant differences, at biodiversity level, were found between the microbial communities of grapes from the two vineyards, nor between the two vintages. The evolution of microorganisms during drying was instead interestingly variable. Moreover, slight but significant differences were found between the two withering systems, although significant only for some taxa.

CONCLUSIONS: NGS metabarcoding showed to be an effective technique in the study of withering-grape microbiome and provided new information on the changes occurring in microbial communities because of the drying process. Indeed, to our knowledge, the present work is the first time-course study of both mycobiome and bacteriome throughout withering. The study also showed that changes of drying conditions can lead to significant modifications of the berry-skin microbiota.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tiziana Nardi, Luca Nerva*, Walter Chitarra*

CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy, Diego Tomasi and Tiziana Nardi  CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy *these authors contributed equally to the work

Contact the author

Keywords

Post-harvest, grape microbiome, metabarcoding, epiphytes

Citation

Related articles…

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.