Macrowine 2021
IVES 9 IVES Conference Series 9 Changes in grape-associated microbiome as a consequence of post-harvest withering

Changes in grape-associated microbiome as a consequence of post-harvest withering

Abstract

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1]. The microbiome associated with withering grapes has been showed to be profoundly linked with the process and its results[2,3]. The main aims of this study were to (a) provide detailed information on bacterial and fungal communities evolution throughout the grapes withering process, and (b) perform a comparative study between two dehydration methods, regarding the associated microbiomes.

METHODS: Samples of withering grapes were collected in the Italian viticultural zone Valpolicella, where the renowned wine Amarone is produced using non-botrytized withered grapes of Corvina variety. Two different post-harvest conditions were analyzed (non-controlled and controlled withering environment); grapes coming from two vineyards (close but differing for soil characteristics) were considered, during 2 subsequent vintages. To map the microbiome during withering, Next-Generation Sequencing (NGS) was employed[4]: the progression of fungal and bacterial species was characterized through metabarcoding (ITS and 16s) at 4 different time points (from 0 to 30% of weight loss).

RESULTS: No significant differences, at biodiversity level, were found between the microbial communities of grapes from the two vineyards, nor between the two vintages. The evolution of microorganisms during drying was instead interestingly variable. Moreover, slight but significant differences were found between the two withering systems, although significant only for some taxa.

CONCLUSIONS: NGS metabarcoding showed to be an effective technique in the study of withering-grape microbiome and provided new information on the changes occurring in microbial communities because of the drying process. Indeed, to our knowledge, the present work is the first time-course study of both mycobiome and bacteriome throughout withering. The study also showed that changes of drying conditions can lead to significant modifications of the berry-skin microbiota.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tiziana Nardi, Luca Nerva*, Walter Chitarra*

CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy, Diego Tomasi and Tiziana Nardi  CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy *these authors contributed equally to the work

Contact the author

Keywords

Post-harvest, grape microbiome, metabarcoding, epiphytes

Citation

Related articles…

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.

Scientific research for an «Ad Maiora 4.1C» application «A step back towards the future universally sustainable EME4.1C». A concrete example of forward-looking and revolutionary entrepreneurial choices in the vine and wine sector

In 1979 an enlightened and farsighted business owner in an area and in an activity unknown to him and in 120 hectares of land cultivated with corn and wheat expressed to one of us that he wanted to start a business in the wine sector. The first innovative “Vigna Dogarina Scientific Applicative Project” has become famous and harmoniously inserted in and with the “Territoir” of eastern Veneto in northeastern Italy. The revolutionary project allowed one of us: 1. to put into practice results of research related to the applied philosophy, vision, methodology of the “Great MetaEthic Chain 4.1C®” algorithm of the “Conegliano Campus 5.1C®” that considers all material, immaterial, spiritual, technical, economic, environmental, social, existential, relational, ethical, MetaEthical factors with basic indexing in a harmonious chain “ 4.1C®” and application “5.1C®”, 2. to implement:

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.

Interacción mesoclima-suelo en la calidad del vino de Cabernet-Sauvignon en las denominaciones de origen Priorato y Tarragona

Las condiciones heliotérmicas en España son en general favorables a alcanzar una elevada producción de azúcares en las bayas de prácticamente todas las variedades que se cultivan en nuestro país.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.