Macrowine 2021
IVES 9 IVES Conference Series 9 Changes in grape-associated microbiome as a consequence of post-harvest withering

Changes in grape-associated microbiome as a consequence of post-harvest withering

Abstract

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1]. The microbiome associated with withering grapes has been showed to be profoundly linked with the process and its results[2,3]. The main aims of this study were to (a) provide detailed information on bacterial and fungal communities evolution throughout the grapes withering process, and (b) perform a comparative study between two dehydration methods, regarding the associated microbiomes.

METHODS: Samples of withering grapes were collected in the Italian viticultural zone Valpolicella, where the renowned wine Amarone is produced using non-botrytized withered grapes of Corvina variety. Two different post-harvest conditions were analyzed (non-controlled and controlled withering environment); grapes coming from two vineyards (close but differing for soil characteristics) were considered, during 2 subsequent vintages. To map the microbiome during withering, Next-Generation Sequencing (NGS) was employed[4]: the progression of fungal and bacterial species was characterized through metabarcoding (ITS and 16s) at 4 different time points (from 0 to 30% of weight loss).

RESULTS: No significant differences, at biodiversity level, were found between the microbial communities of grapes from the two vineyards, nor between the two vintages. The evolution of microorganisms during drying was instead interestingly variable. Moreover, slight but significant differences were found between the two withering systems, although significant only for some taxa.

CONCLUSIONS: NGS metabarcoding showed to be an effective technique in the study of withering-grape microbiome and provided new information on the changes occurring in microbial communities because of the drying process. Indeed, to our knowledge, the present work is the first time-course study of both mycobiome and bacteriome throughout withering. The study also showed that changes of drying conditions can lead to significant modifications of the berry-skin microbiota.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tiziana Nardi, Luca Nerva*, Walter Chitarra*

CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy, Diego Tomasi and Tiziana Nardi  CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy *these authors contributed equally to the work

Contact the author

Keywords

Post-harvest, grape microbiome, metabarcoding, epiphytes

Citation

Related articles…

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Improvement of the red wine AOC Grignolino d’Asti typicality using some technological innovations

L’AOC Grignolino d’Asti (20000 hl environ de production) est un vin de la province de Asti, produit avec le raisin rouge du cépage de même nom originaire du Piémont (Nord-Ouest d’Italie).