Macrowine 2021
IVES 9 IVES Conference Series 9 Changes in grape-associated microbiome as a consequence of post-harvest withering

Changes in grape-associated microbiome as a consequence of post-harvest withering

Abstract

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1]. The microbiome associated with withering grapes has been showed to be profoundly linked with the process and its results[2,3]. The main aims of this study were to (a) provide detailed information on bacterial and fungal communities evolution throughout the grapes withering process, and (b) perform a comparative study between two dehydration methods, regarding the associated microbiomes.

METHODS: Samples of withering grapes were collected in the Italian viticultural zone Valpolicella, where the renowned wine Amarone is produced using non-botrytized withered grapes of Corvina variety. Two different post-harvest conditions were analyzed (non-controlled and controlled withering environment); grapes coming from two vineyards (close but differing for soil characteristics) were considered, during 2 subsequent vintages. To map the microbiome during withering, Next-Generation Sequencing (NGS) was employed[4]: the progression of fungal and bacterial species was characterized through metabarcoding (ITS and 16s) at 4 different time points (from 0 to 30% of weight loss).

RESULTS: No significant differences, at biodiversity level, were found between the microbial communities of grapes from the two vineyards, nor between the two vintages. The evolution of microorganisms during drying was instead interestingly variable. Moreover, slight but significant differences were found between the two withering systems, although significant only for some taxa.

CONCLUSIONS: NGS metabarcoding showed to be an effective technique in the study of withering-grape microbiome and provided new information on the changes occurring in microbial communities because of the drying process. Indeed, to our knowledge, the present work is the first time-course study of both mycobiome and bacteriome throughout withering. The study also showed that changes of drying conditions can lead to significant modifications of the berry-skin microbiota.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tiziana Nardi, Luca Nerva*, Walter Chitarra*

CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy, Diego Tomasi and Tiziana Nardi  CREA – Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca Viticoltura ed Enologia, Conegliano, Italy *these authors contributed equally to the work

Contact the author

Keywords

Post-harvest, grape microbiome, metabarcoding, epiphytes

Citation

Related articles…

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Terroir and Typicity: proposed definitions for two essential concepts in the understanding of Geographical Indications and sustainable development

The content of this communication arises from the deliberations of a working group mandated within the framework of the INRA-INAO 2000-2003 research convention, which brought together INAO representatives and researchers who had worked on AOCs or PGIs, in disciplines from the sphere of the humanities (consumer science, marketing, rural development) and biotechnical sciences (agronomy, animal production science, technology, biochemistry).

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Oxygen consumption and changes in chemical composition of young wines

The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life.