Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

Abstract

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars. In this study, we propose to investigate the capacity of strains of B. bruxellensis to form biofilm according to different conditions and to characterize its structure.

METHODS: Sixty-five isolates of B. bruxellensis were sampled from a cellar and discriminated into genetic groups by microsatellite analysis. The capacity of selected strains to adhere and form biofilm has been investigated in different conditions of media and supports, related to wine environment. The structure of the biofilm and its components were explored using several microscopic techniques as confocal laser scanning microscopy, electronic microscopy and epifluorescence microscopy.

RESULTS: Twelve strains among the 65 isolates were selected and have showed the capacity to form biofilm on polystyrene surface. Microscopic observations of the biofilm revealed microcolonies, filamentous cells and extracellular polymeric substances despite a small thickness. Then, the study of the impact of wine on B. bruxellensis biofilm revealed biofilm cell released and growth of these released biofilm cells, probable contamination source of the wine. Finally, for both planktonic and biofilm lifestyles in wine, a new chlamydospore-like element was observed for B. bruxellensis, described as a resistance form in other fungi.

CONCLUSIONS: This study validates the capacity of B. bruxellensis to form biofilm and highlights structural element of this mode of life. Moreover, an additional resistance strategy was suggested through the description of the chlamydospore-like elements. New insights into the persistence of B. bruxellensis during the winemaking process and in wineries have emerged.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manon Lebleux, Hany ABDO, Louise BASMACIYAN, Julie LAURENT, Chloé ROULLIER-GALL, Hervé ALEXANDRE, Michèle GUILLOUX-BENATIER, Stéphanie WEIDMANN, Sandrine ROUSSEAUX

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS Laboratory-IUVV, Dijon, France

Contact the author

Keywords

Brettanomyces bruxellensis, biofilm, wine spoilage

Citation

Related articles…

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Une méthode d’étude synthétique du paysage

a) wine, a qualitative and user-friendly product, favors a visual support, even for a scientific study because it refers to the image of the terroir, in particular by its visible landscape. b) the vineyard landscape, which is fairly open by definition, favors this type of approach. c) the framework of the Terroir Test conducted by the URVV (INRA – Angers) comprises 15 micro-plots of 100 strains, and requires at this scale precise surveys of the environment, hence systematic shots, of the center of the plot, over 360°, at 50 mm intervals, at 1.70 m from the ground and horizontally.

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Grape berry size is a key factor in determining New Zealand Pinot noir wine composition

Making high quality but affordable Pinot noir (PN) wine is challenging in most terroirs and New Zealand’s (NZ) situation is no exception. To increase the probability of making highly typical PN wines producers choose to grow grapes in cool climates on lower fertility soils while adopting labour intensive practices. Stringent yield targets and higher input costs necessarily mean that PN wine cost is high, and profitability lower, in line-priced varietal wine ranges. To understand the reasons why higher yielding vines are perceived to produce wines of lower quality we have undertaken an extensive study of PN in NZ. Since 2018, we established a network of twelve trial sites in three NZ regions to find individual vines that produced acceptable commercial yields (above 2.5kg per vine) and wines of composition comparable to “Icon” labels. Approximately 20% of 660 grape lots (N = 135) were selected from within a narrow juice Total Soluble Solids (TSS) range and made into single vine wines under controlled conditions. Principal Component Analysis of the vine, berry, juice and wine parameters from three vintages found grape berry mass to be most effective clustering variable. As berry mass category decreased there was a systematic increase in the probability of higher berry red colour and total phenolics with a parallel increase in wine phenolics, changed aroma fraction and decreased juice amino acids. The influence of berry size on wine composition would appear stronger than the individual effects of vintage, region, vineyard or vine yield. Our observations support the hypothesis that it is possible to produce PN wines that fall within an “Icon” benchmark composition range at yields above 2.5kg per vine provided that the Leaf Area:Fruit Weight ratio is above 12cm2 per g, mean berry mass is below 1.2g and juice TSS is above 22°Brix.