Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

Abstract

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars. In this study, we propose to investigate the capacity of strains of B. bruxellensis to form biofilm according to different conditions and to characterize its structure.

METHODS: Sixty-five isolates of B. bruxellensis were sampled from a cellar and discriminated into genetic groups by microsatellite analysis. The capacity of selected strains to adhere and form biofilm has been investigated in different conditions of media and supports, related to wine environment. The structure of the biofilm and its components were explored using several microscopic techniques as confocal laser scanning microscopy, electronic microscopy and epifluorescence microscopy.

RESULTS: Twelve strains among the 65 isolates were selected and have showed the capacity to form biofilm on polystyrene surface. Microscopic observations of the biofilm revealed microcolonies, filamentous cells and extracellular polymeric substances despite a small thickness. Then, the study of the impact of wine on B. bruxellensis biofilm revealed biofilm cell released and growth of these released biofilm cells, probable contamination source of the wine. Finally, for both planktonic and biofilm lifestyles in wine, a new chlamydospore-like element was observed for B. bruxellensis, described as a resistance form in other fungi.

CONCLUSIONS: This study validates the capacity of B. bruxellensis to form biofilm and highlights structural element of this mode of life. Moreover, an additional resistance strategy was suggested through the description of the chlamydospore-like elements. New insights into the persistence of B. bruxellensis during the winemaking process and in wineries have emerged.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manon Lebleux, Hany ABDO, Louise BASMACIYAN, Julie LAURENT, Chloé ROULLIER-GALL, Hervé ALEXANDRE, Michèle GUILLOUX-BENATIER, Stéphanie WEIDMANN, Sandrine ROUSSEAUX

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS Laboratory-IUVV, Dijon, France

Contact the author

Keywords

Brettanomyces bruxellensis, biofilm, wine spoilage

Citation

Related articles…

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Influence du terroir et de la conduite du verger sur la composition des pommes à cidre

L’économie cidricole française est concentrée dans les régions du grand Ouest avec environ 40% de la production nationale de pommes à cidre pour la seule région Bas-Normande où le Pays d’Auge occupe

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.