Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

Abstract

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars. In this study, we propose to investigate the capacity of strains of B. bruxellensis to form biofilm according to different conditions and to characterize its structure.

METHODS: Sixty-five isolates of B. bruxellensis were sampled from a cellar and discriminated into genetic groups by microsatellite analysis. The capacity of selected strains to adhere and form biofilm has been investigated in different conditions of media and supports, related to wine environment. The structure of the biofilm and its components were explored using several microscopic techniques as confocal laser scanning microscopy, electronic microscopy and epifluorescence microscopy.

RESULTS: Twelve strains among the 65 isolates were selected and have showed the capacity to form biofilm on polystyrene surface. Microscopic observations of the biofilm revealed microcolonies, filamentous cells and extracellular polymeric substances despite a small thickness. Then, the study of the impact of wine on B. bruxellensis biofilm revealed biofilm cell released and growth of these released biofilm cells, probable contamination source of the wine. Finally, for both planktonic and biofilm lifestyles in wine, a new chlamydospore-like element was observed for B. bruxellensis, described as a resistance form in other fungi.

CONCLUSIONS: This study validates the capacity of B. bruxellensis to form biofilm and highlights structural element of this mode of life. Moreover, an additional resistance strategy was suggested through the description of the chlamydospore-like elements. New insights into the persistence of B. bruxellensis during the winemaking process and in wineries have emerged.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manon Lebleux, Hany ABDO, Louise BASMACIYAN, Julie LAURENT, Chloé ROULLIER-GALL, Hervé ALEXANDRE, Michèle GUILLOUX-BENATIER, Stéphanie WEIDMANN, Sandrine ROUSSEAUX

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS Laboratory-IUVV, Dijon, France

Contact the author

Keywords

Brettanomyces bruxellensis, biofilm, wine spoilage

Citation

Related articles…

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.

High-throughput direct monitoring of microbial resources for oenology by direct injection mass spectrometry

Microorganisms have been widely used in oenology since prehistoric times. Their metabolism significantly impacts many wine properties and is particularly essential for the production of flavor compounds, thereby affecting perceived wine quality.

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

In this work, we present a method based on very high spatial resolution (VHSR) aerial images acquired in the visible domain and that map soil surface diversity at the hillslope

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.