Macrowine 2021
IVES 9 IVES Conference Series 9 Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

Abstract

The phenolic profile of the red grapevine varieties berries is a key quality factor and several techniques have been applied to improve it (Perez-Lamela et al., 2007; Singh SK and Sharma, 2010). The last decade the application of resistance elicitors and phytohormones is an innovative viticultural technique (Paladines-Quezada et al., 2021; Alenazi et al., 2019).In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison. Physicochemical and phenolic characteristics of the berries and microbial communities of carposphere were analyzed during harvest.Differences in the microbial communities were observed after the application of the plant activators. CHT treatment increased the abundance of the beneficial lactic acid bacteria while the ABA treatment decreased the presence of spoilage fungi on the carposphere. Treatments differentiate total phenolics, anthocyanins and in the chemical characteristics of grape must with chitosan treated grapes had increased anthocyanins and skin-derived phenolics that correlated positively with the microbial taxa that was discriminant by LefSe analysis.In the present research, we investigated the effect of alternative environmentally friendly compounds on grape berry quality characteristics, and how the carposhere communities could be influenced by them, contributing to the establishment of more sustainable viticulture.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Myrto Tsiknia, Nikolaos KONTOUDAKIS1, Maria DIMOPOULOU2, Yorgos KOTSERIDIS1

Soil Science and Agricultural Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, Greece,Dimitrios-Evangelos MILIORDOS1;

1 Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Enology and Alcoholic Drinks, Athens
2 Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece

Contact the author

Keywords

Vitis vinifera, mouhtaro, resistance elicitors, plant hormones, grapevine microbiome, benzothiadiazole, chitozan, abscisic acid

Citation

Related articles…

Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Le vin est un des produits finis que l’on obtient à partir de raisins. La vigne réagit à de nombreux facteurs environnementaux et son comportement est directement influencé par les pratiques culturales

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

Evolution of oak barrels C-glucosidic ellagitannins

During oak wood contact, wine undergoes important modifications that modulate its organoleptic quality and complexity, including its aroma, structure, astringency, bitterness and color. Vescalagin and castalagin are the two main C-glucosidic ellagitannins found in oak wood used for wine aging wood but lyxose/xylose derivatives (grandinin and roburin e) and dimeric forms (roburins a,b, c and d) are also present. The presence of several hydroxyl groups in the ortho-positions at the periphery of the structure of the ellagitannin isomers allows these molecules to undergo oxidation or condensation reactions with other compounds.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming