Macrowine 2021
IVES 9 IVES Conference Series 9 Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

Abstract

The phenolic profile of the red grapevine varieties berries is a key quality factor and several techniques have been applied to improve it (Perez-Lamela et al., 2007; Singh SK and Sharma, 2010). The last decade the application of resistance elicitors and phytohormones is an innovative viticultural technique (Paladines-Quezada et al., 2021; Alenazi et al., 2019).In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison. Physicochemical and phenolic characteristics of the berries and microbial communities of carposphere were analyzed during harvest.Differences in the microbial communities were observed after the application of the plant activators. CHT treatment increased the abundance of the beneficial lactic acid bacteria while the ABA treatment decreased the presence of spoilage fungi on the carposphere. Treatments differentiate total phenolics, anthocyanins and in the chemical characteristics of grape must with chitosan treated grapes had increased anthocyanins and skin-derived phenolics that correlated positively with the microbial taxa that was discriminant by LefSe analysis.In the present research, we investigated the effect of alternative environmentally friendly compounds on grape berry quality characteristics, and how the carposhere communities could be influenced by them, contributing to the establishment of more sustainable viticulture.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Myrto Tsiknia, Nikolaos KONTOUDAKIS1, Maria DIMOPOULOU2, Yorgos KOTSERIDIS1

Soil Science and Agricultural Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, Greece,Dimitrios-Evangelos MILIORDOS1;

1 Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Enology and Alcoholic Drinks, Athens
2 Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece

Contact the author

Keywords

Vitis vinifera, mouhtaro, resistance elicitors, plant hormones, grapevine microbiome, benzothiadiazole, chitozan, abscisic acid

Citation

Related articles…

Agronomic behaviour of a native grapevine cultivar from the North of Spain (Vitis vinifera L.) in a mountain viticulture area and in a coastal zone

A work involving the finding, the description and the recovery of old grapevine varieties from the north and north east of Spain was begun in the CSIC in the year 1987.

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).

La vinificación de las uvas aromáticas: Moscateles y Malvasías

Las uvas aromáticas se pueden dividir en dos clases, Moscateles y Malvasías, dependiendo del hecho de que el linalol o el geraniol, respectivamente, sean los alcoholes terpénicos monohidroxilados que

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.