Macrowine 2021
IVES 9 IVES Conference Series 9 Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

Abstract

The phenolic profile of the red grapevine varieties berries is a key quality factor and several techniques have been applied to improve it (Perez-Lamela et al., 2007; Singh SK and Sharma, 2010). The last decade the application of resistance elicitors and phytohormones is an innovative viticultural technique (Paladines-Quezada et al., 2021; Alenazi et al., 2019).In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison. Physicochemical and phenolic characteristics of the berries and microbial communities of carposphere were analyzed during harvest.Differences in the microbial communities were observed after the application of the plant activators. CHT treatment increased the abundance of the beneficial lactic acid bacteria while the ABA treatment decreased the presence of spoilage fungi on the carposphere. Treatments differentiate total phenolics, anthocyanins and in the chemical characteristics of grape must with chitosan treated grapes had increased anthocyanins and skin-derived phenolics that correlated positively with the microbial taxa that was discriminant by LefSe analysis.In the present research, we investigated the effect of alternative environmentally friendly compounds on grape berry quality characteristics, and how the carposhere communities could be influenced by them, contributing to the establishment of more sustainable viticulture.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Myrto Tsiknia, Nikolaos KONTOUDAKIS1, Maria DIMOPOULOU2, Yorgos KOTSERIDIS1

Soil Science and Agricultural Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, Greece,Dimitrios-Evangelos MILIORDOS1;

1 Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Enology and Alcoholic Drinks, Athens
2 Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece

Contact the author

Keywords

Vitis vinifera, mouhtaro, resistance elicitors, plant hormones, grapevine microbiome, benzothiadiazole, chitozan, abscisic acid

Citation

Related articles…

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.