Macrowine 2021
IVES 9 IVES Conference Series 9 Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Abstract

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process. The aim of the present research was to study the metabolism of S. cerevisiae under two different nitrogen supplementation status and to investigate the relative expression of specific genes, that are directly related to the biosynthesis of specific potent odornats such as, terpenes and esters. 

The commercial yeast strains 1X (S.cerevisiae) and 2X (S.cerevisiae x S.bayanus) were inoculated in Moschofilero (Vitis Vinifera L. cv) grape must under two different concentrations of yeast assimilable nitrogen (YAN), a  low at 150 mg/L and a high at 300 mg/L. The produced wines were analyzed for their standard enological parameters, their volatile composition by SPE/GC–MS analysis as well as for their sensory profile. Totally 8 fermentations trials, were realised in triplicate. The fermentation was monitored by measuring the optical density and sugar consumption. Metabolic response was tested through real-time RT-PCR of genes implicated in aroma production of esters and terpenes such as ATF1, ATF2, EEB1, EHT1, IAH1, BGL2, EXG1. Sampling for metabolites and gene expression analysis were taken at the time of inoculation, after 48 hours, when two thirds of the sugars were depleted and at the end of the alcoholic fermentation (< 2g/L rs).

In terms of the volatile characterization of the wines, esters, linalool and nerol appeared to be clearly distinct between the different levels of YAN, which confirms the specialization in volatile compounds production among different nitrogen concentration levels. For instance, linalool was found to be at 0.05 mg/L for low nitrogen concentration, while high nitrogen levels resulted to a concentration of 0.12 mg/L. Real-time-PCR results revealed that, in both cases of nitrogen implementation, the analyzed genes were found to be expressed mainly before the fermentation of the 70% of the sugars. In addition, an overexpression of the BGL2 gene, corresponded well to the linalool concentration found, was observed in case of high nitrogen condition. Also, the EHT1 was expressed five times higher in case of high nitrogen concentration. Finally, correlations between ethyl esters and EEB1, acetate esters and ATF2 (p<0.05) were also found in both cases. 

Our study revealed the impact of different nitrogen implementations on the volatile compounds and the relative expression of specific genes. Metabolic analysis of selected volatile components of the wine aroma in conjunction with transcriptional analyses provide a great approach to orient the fermentation process towards a desirable wine aromatic profile.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Despina Lola, Chrysanthi KALLONIATI, Maria DIMOPOULOU, Maria Ioanna XENIA, Emmanouil FLEMETAKIS, Yorgos KOTSERIDIS

Laboratory of Oenology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology and Alcoholic Drinks  (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author

Keywords

yeast metabolism, yan, nitrogen supplementation, volatile profile, gene expression

Citation

Related articles…

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.

Pedological criteria according to the French hierarchy of vintages, Appellations d’Origine Contrôlée (AOC): study of two toposequences located in the Burgundian “Côte”

The concept of terroir is defined by a set of natural and human factors. On the slopy vineyards of the Burgundian « Côte », the « Appellations d’Origine Contrôlée (AOC) » spread out according to the slope in their order of quality : « AOC Grand Cru » at the top, « AOC Premier Cru » and « AOC Village » and « Bourgogne » on the piemont. In order to correlate the hierarchy of the vintages with the evolution of the topographic and pedological criteria, two toposequences were studied, in Gevrey Chambertin (« Côte de Nuits ») and Aloxe Corton (« Côte de Beaune »).

Investigating the variability of basal crop coefficient across diverse production contexts in commercial vineyards

Vine water use is a critical determinant of vineyard management practices, especially in the context of climate change.

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.