Macrowine 2021
IVES 9 IVES Conference Series 9 Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Abstract

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process. The aim of the present research was to study the metabolism of S. cerevisiae under two different nitrogen supplementation status and to investigate the relative expression of specific genes, that are directly related to the biosynthesis of specific potent odornats such as, terpenes and esters. 

The commercial yeast strains 1X (S.cerevisiae) and 2X (S.cerevisiae x S.bayanus) were inoculated in Moschofilero (Vitis Vinifera L. cv) grape must under two different concentrations of yeast assimilable nitrogen (YAN), a  low at 150 mg/L and a high at 300 mg/L. The produced wines were analyzed for their standard enological parameters, their volatile composition by SPE/GC–MS analysis as well as for their sensory profile. Totally 8 fermentations trials, were realised in triplicate. The fermentation was monitored by measuring the optical density and sugar consumption. Metabolic response was tested through real-time RT-PCR of genes implicated in aroma production of esters and terpenes such as ATF1, ATF2, EEB1, EHT1, IAH1, BGL2, EXG1. Sampling for metabolites and gene expression analysis were taken at the time of inoculation, after 48 hours, when two thirds of the sugars were depleted and at the end of the alcoholic fermentation (< 2g/L rs).

In terms of the volatile characterization of the wines, esters, linalool and nerol appeared to be clearly distinct between the different levels of YAN, which confirms the specialization in volatile compounds production among different nitrogen concentration levels. For instance, linalool was found to be at 0.05 mg/L for low nitrogen concentration, while high nitrogen levels resulted to a concentration of 0.12 mg/L. Real-time-PCR results revealed that, in both cases of nitrogen implementation, the analyzed genes were found to be expressed mainly before the fermentation of the 70% of the sugars. In addition, an overexpression of the BGL2 gene, corresponded well to the linalool concentration found, was observed in case of high nitrogen condition. Also, the EHT1 was expressed five times higher in case of high nitrogen concentration. Finally, correlations between ethyl esters and EEB1, acetate esters and ATF2 (p<0.05) were also found in both cases. 

Our study revealed the impact of different nitrogen implementations on the volatile compounds and the relative expression of specific genes. Metabolic analysis of selected volatile components of the wine aroma in conjunction with transcriptional analyses provide a great approach to orient the fermentation process towards a desirable wine aromatic profile.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Despina Lola, Chrysanthi KALLONIATI, Maria DIMOPOULOU, Maria Ioanna XENIA, Emmanouil FLEMETAKIS, Yorgos KOTSERIDIS

Laboratory of Oenology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology and Alcoholic Drinks  (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author

Keywords

yeast metabolism, yan, nitrogen supplementation, volatile profile, gene expression

Citation

Related articles…

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC).

Distribution of photosynthates towards the grapes: effects of leaf removal and cluster thinning applied before veraison in cv. Verdejo

The relationship between grape production and leaf surface is a highly debated aspect in terms of the impact it may have on the composition and quality of grapes, especially in areas that focus their cultivation on high-quality wine. In many occasions, the limitation of the unitary production level in these areas is claimed to be the main factor for achieving high quality levels in the wine, forgetting the importance of the source-sink relationship and other environmental factors and management of the canopy. Taking this consideration into account, this work seeks to know the response of the vine as a whole, and the individual shoot as well, to the application of various alternatives of leaves and clusters removal, carried out in the phase immediately before veraison, in cv. Verdejo, in Spain.

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.