Macrowine 2021
IVES 9 IVES Conference Series 9 Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Abstract

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process. The aim of the present research was to study the metabolism of S. cerevisiae under two different nitrogen supplementation status and to investigate the relative expression of specific genes, that are directly related to the biosynthesis of specific potent odornats such as, terpenes and esters. 

The commercial yeast strains 1X (S.cerevisiae) and 2X (S.cerevisiae x S.bayanus) were inoculated in Moschofilero (Vitis Vinifera L. cv) grape must under two different concentrations of yeast assimilable nitrogen (YAN), a  low at 150 mg/L and a high at 300 mg/L. The produced wines were analyzed for their standard enological parameters, their volatile composition by SPE/GC–MS analysis as well as for their sensory profile. Totally 8 fermentations trials, were realised in triplicate. The fermentation was monitored by measuring the optical density and sugar consumption. Metabolic response was tested through real-time RT-PCR of genes implicated in aroma production of esters and terpenes such as ATF1, ATF2, EEB1, EHT1, IAH1, BGL2, EXG1. Sampling for metabolites and gene expression analysis were taken at the time of inoculation, after 48 hours, when two thirds of the sugars were depleted and at the end of the alcoholic fermentation (< 2g/L rs).

In terms of the volatile characterization of the wines, esters, linalool and nerol appeared to be clearly distinct between the different levels of YAN, which confirms the specialization in volatile compounds production among different nitrogen concentration levels. For instance, linalool was found to be at 0.05 mg/L for low nitrogen concentration, while high nitrogen levels resulted to a concentration of 0.12 mg/L. Real-time-PCR results revealed that, in both cases of nitrogen implementation, the analyzed genes were found to be expressed mainly before the fermentation of the 70% of the sugars. In addition, an overexpression of the BGL2 gene, corresponded well to the linalool concentration found, was observed in case of high nitrogen condition. Also, the EHT1 was expressed five times higher in case of high nitrogen concentration. Finally, correlations between ethyl esters and EEB1, acetate esters and ATF2 (p<0.05) were also found in both cases. 

Our study revealed the impact of different nitrogen implementations on the volatile compounds and the relative expression of specific genes. Metabolic analysis of selected volatile components of the wine aroma in conjunction with transcriptional analyses provide a great approach to orient the fermentation process towards a desirable wine aromatic profile.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Despina Lola, Chrysanthi KALLONIATI, Maria DIMOPOULOU, Maria Ioanna XENIA, Emmanouil FLEMETAKIS, Yorgos KOTSERIDIS

Laboratory of Oenology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology and Alcoholic Drinks  (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author

Keywords

yeast metabolism, yan, nitrogen supplementation, volatile profile, gene expression

Citation

Related articles…

Impact of pedoclimatical conditions on the precocity potential of vineyards in the canton of Geneva

Terroir studies are common nowadays but few have used precise pedoclimatic measures in order to evaluate the precocity potential. The objectives of this work were (i) to assess the effect of main terroir parameters (soil, climate and topography) influencing the phenological development of the vine, and (ii) to evaluate a geostatistic approach by using a high number of already existing plots (higher variability) to analyze the terroir parameters’ impact.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Fractal analysis of the hydrological information obtained from high-spatial resolution dems: application in terroir zoning of d.o. campo de Borja (Spain)

One of the characteristics of the terroir zoning studies that is more complex to manage is the scale dependence. Thus, terroir zoning studies of the same area at different scales are comparable but not equal. Fractal analysis has demonstrated to be a suitable tool to characterize and model natural elements within a defined range of scales.

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.