Macrowine 2021
IVES 9 IVES Conference Series 9 Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Abstract

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process. The aim of the present research was to study the metabolism of S. cerevisiae under two different nitrogen supplementation status and to investigate the relative expression of specific genes, that are directly related to the biosynthesis of specific potent odornats such as, terpenes and esters. 

The commercial yeast strains 1X (S.cerevisiae) and 2X (S.cerevisiae x S.bayanus) were inoculated in Moschofilero (Vitis Vinifera L. cv) grape must under two different concentrations of yeast assimilable nitrogen (YAN), a  low at 150 mg/L and a high at 300 mg/L. The produced wines were analyzed for their standard enological parameters, their volatile composition by SPE/GC–MS analysis as well as for their sensory profile. Totally 8 fermentations trials, were realised in triplicate. The fermentation was monitored by measuring the optical density and sugar consumption. Metabolic response was tested through real-time RT-PCR of genes implicated in aroma production of esters and terpenes such as ATF1, ATF2, EEB1, EHT1, IAH1, BGL2, EXG1. Sampling for metabolites and gene expression analysis were taken at the time of inoculation, after 48 hours, when two thirds of the sugars were depleted and at the end of the alcoholic fermentation (< 2g/L rs).

In terms of the volatile characterization of the wines, esters, linalool and nerol appeared to be clearly distinct between the different levels of YAN, which confirms the specialization in volatile compounds production among different nitrogen concentration levels. For instance, linalool was found to be at 0.05 mg/L for low nitrogen concentration, while high nitrogen levels resulted to a concentration of 0.12 mg/L. Real-time-PCR results revealed that, in both cases of nitrogen implementation, the analyzed genes were found to be expressed mainly before the fermentation of the 70% of the sugars. In addition, an overexpression of the BGL2 gene, corresponded well to the linalool concentration found, was observed in case of high nitrogen condition. Also, the EHT1 was expressed five times higher in case of high nitrogen concentration. Finally, correlations between ethyl esters and EEB1, acetate esters and ATF2 (p<0.05) were also found in both cases. 

Our study revealed the impact of different nitrogen implementations on the volatile compounds and the relative expression of specific genes. Metabolic analysis of selected volatile components of the wine aroma in conjunction with transcriptional analyses provide a great approach to orient the fermentation process towards a desirable wine aromatic profile.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Despina Lola, Chrysanthi KALLONIATI, Maria DIMOPOULOU, Maria Ioanna XENIA, Emmanouil FLEMETAKIS, Yorgos KOTSERIDIS

Laboratory of Oenology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology and Alcoholic Drinks  (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author

Keywords

yeast metabolism, yan, nitrogen supplementation, volatile profile, gene expression

Citation

Related articles…

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Influence de la nutrition potassique sur le manque d’acidité des vins issus du cépage Negrette

A worrying drop in the acidity of wines has been observed in many wine regions, such as Bordeaux (Merlot), Burgundy (Pinot Noir), Côtes-du-Rhône (Grenache) or Rioja (Tempranillo). This lack of acidity is particularly marked in the Midi-Pyrenean vineyards of the Côtes du Frontonnais (Tournier, 1993). However, the acidity of a wine is one of the main factors of its quality, in fact, a low acidity combined with an insufficient tannic structure leads to rapid oxidation of wines and makes them age prematurely.

Market analysis of Chilean Pinot noir, Carménère, and Cabernet-Sauvignon wines: A comparative study of chemical parameters across low, medium, and high price segments

Wine quality is a complex concept determined by multiple factors, including vineyard management, winemaking operations, and the sensory perception of key attributes.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics.