Macrowine 2021
IVES 9 IVES Conference Series 9 Aroma profile of Oenococcus oeni strains in different life styles

Aroma profile of Oenococcus oeni strains in different life styles

Abstract

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

METHODS: Bacterial adhesion on polystyrene was evaluated using 96-well plates in MRS and must. Planktonic and sessile cells were numbered by plate count. Biofilm formation was also visualized by confocal laser scanning microscopy (CLSM, Nikon A1R) using hoechst fluorescent dye. Aroma compounds produced by sessile and planktonic cells were determined by solid phase microextraction coupled with gas chromatography (GC/MS SPME). RNA was extracted using using the Tri-reagent method (Sigma-Aldrich) according to the manufacturer’s instructions. Real-time analysis was performed using an iCycler IQ realtime PCR Detection System (Bio-Rad). ldhD and gyrA were used as reference genes. Fold changes were determined using the 2-ΔΔCT method.

RESULTS: The strains adhered to polystyrene in presence of MRS and must. In any case all strains preferred the planktonic state. CSLM was used to visualize cells distribution and their aggregation and confirmed that strains were able to form biofilm in must and MRS in a strain specific way. Quantitative and qualitative differences on aromatic compounds production were also detected. Higher alcohols and esters were mainly produced in the planktonic state, while organic acids in the sessile one. A strain specific behaviour was observed also for gene expression.

CONCLUSIONS: Biofilm formation can modulate aroma compounds production and probably the organoleptic characteristics of wine. Gene expression analysis revealed that aggregation state can influence malate and citrate metabolism. Further investigations are necessary to evaluate the interaction between Saccharomyces cerevisiae/non-Saccharomyces strains and O. oeni in biofilm formation in order to modulate wine characteristics.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rosanna Tofalo, Giorgia PERPETUINI,  Alessio Pio  ROSSETTI, Carlo PERLA

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy Noemi BATTISTELLI, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy  Luca VALBONETTI,  Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of TeramoVia R. Balzarini 1, 64100 Teramo, (TE), Italy,  Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy Giuseppe ARFELLI,  Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy , Dalton Biotecnologie S.R.L., Spoltore, PE, Italy Rosanna TOFALO Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy

Contact the author

Keywords

oenococcus oeni, gene expression, aroma profile, biofilm

Citation

Related articles…

Terroir et marché des A.O.C

Cette communication sera basée sur les résultats d’une étude auprès des consommateurs réalisée par la société G3 pour l’I.N.A.O. sur les attitudes des consommateurs vis à vis des produits de terroir et des A.O.C. et sur un mémoire de DEA soutenu par Monsieur J-C. DURIEUX à l’Université de Paris X Nanterre, consacré aux variables explicatives du comportement d’achat des vins A.O.C.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.