Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

Abstract

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas. The negative impact and their low limit threshold make these volatile sulfur compounds (VSCs) an essential object of study to control the quality of the wine. To date, the chemical and metabolism mechanisms involved in the formation of VSC during fermentation remain poorly elucidated. Furthermore, the incidence of environmental or technological factors that may interact with yeast metabolism on the VSCs production has not been comprehensively studied. In this context, this project aimed to further investigate the formation of VSCs during S. cerevisiae wine fermentation, assessing the relative contribution of yeast metabolism and chemical conversions to VSCs production and studying the modulation of these productions by environmental (nitrogen resource composition and availability, vitamin concentration) or technological (SO2 addition) parameters. Fermentations were carried out using different conditions (YAN, pantothenic acid concentrations, methionine, and cysteine availability) with 4 S. cerevisiae strains and the production of 18 VACs was measured by GC-MS to elucidated how the variation of these parameters changes final concentration. As expected the addition of methionine incremented the final production of methional derivated compounds but didn’t affect the rest of the compounds. The addition of cysteine increment the production of the esters (methyl thioacetate and ethyl thioacetate) without changing the rest concentrations of other compounds. We also found out that an increment in pantothenic acid, as the addition of methionine, can promote the production of methional-derived compounds. With these data, we could be able to reduced total VSC production during fermentation.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Jimenez Lorenzo, Pascale Brial, Cristian Picou, Marc Perez, Audrey Bloem, Carole Camarasa

UMR SPO, INRA, Université Montpellier, SupAgro

Contact the author

Keywords

saccharomyces cerevisiae, vsc, fermentation, yan, gc-ms

Citation

Related articles…

Genomic perspective of Lachancea thermotolerans in wine bioacidification

We have sequenced two commercial strains of Lachancea thermotolerans (Lt) from the company Lallemand: Laktia™ y Blizz™.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: agronomic performance and water relations

We report the effects of different drip irrigation treatments on the agronomic performance and water relations of Tempranillo grapevines, pruned to a bilateral cordon

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs.

Terroir Hesse – Soil determines wine style

The project “Terroir Hesse” works out the main type and characteristics of soil-based terroirs and the resulting wine styles for the hessian wine-growing regions Rheingau and Hessian Bergstrasse.