Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

Abstract

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas. The negative impact and their low limit threshold make these volatile sulfur compounds (VSCs) an essential object of study to control the quality of the wine. To date, the chemical and metabolism mechanisms involved in the formation of VSC during fermentation remain poorly elucidated. Furthermore, the incidence of environmental or technological factors that may interact with yeast metabolism on the VSCs production has not been comprehensively studied. In this context, this project aimed to further investigate the formation of VSCs during S. cerevisiae wine fermentation, assessing the relative contribution of yeast metabolism and chemical conversions to VSCs production and studying the modulation of these productions by environmental (nitrogen resource composition and availability, vitamin concentration) or technological (SO2 addition) parameters. Fermentations were carried out using different conditions (YAN, pantothenic acid concentrations, methionine, and cysteine availability) with 4 S. cerevisiae strains and the production of 18 VACs was measured by GC-MS to elucidated how the variation of these parameters changes final concentration. As expected the addition of methionine incremented the final production of methional derivated compounds but didn’t affect the rest of the compounds. The addition of cysteine increment the production of the esters (methyl thioacetate and ethyl thioacetate) without changing the rest concentrations of other compounds. We also found out that an increment in pantothenic acid, as the addition of methionine, can promote the production of methional-derived compounds. With these data, we could be able to reduced total VSC production during fermentation.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Jimenez Lorenzo, Pascale Brial, Cristian Picou, Marc Perez, Audrey Bloem, Carole Camarasa

UMR SPO, INRA, Université Montpellier, SupAgro

Contact the author

Keywords

saccharomyces cerevisiae, vsc, fermentation, yan, gc-ms

Citation

Related articles…

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Cross analytical and sensory differentiation of monovarietal white wines from four autochthonous grape varieties: focus on macromolecules

White wines contain macromolecules such as proteins, phenolic compounds and polysaccharides. On a sensory
level, these compounds contribute to the ‘mouthfeel’ that differentiates the white wines worldwide [1].

Grapevine varietal diversity as mitigation tool for climate change: Agronomic and oenologic potential of 14 foreign varieties grown in Languedoc region (France)

Climate change effects in Languedoc include an expected rise in temperatures, increased evapotranspiration as well as more severe and frequent climatic hazards, such as frost, drought periods and heat waves. For winegrowers theses phenomena impact both yield and quality, resulting in more frequent unbalanced wines. Research on identified mitigation tools for vineyard management is necessary to improve resilience of grapevine agrosystems. Varietal assortment is one of them. This study focuses on agronomic and oenologic potential of 14 foreign varieties grown in Languedoc French region. Fourteen grapevine varieties were monitored during 2021 from June until harvest on eight different sites, some of which occurring on more than one site adding up to 21 different modalities: 7 white varieties Alvarinho B, Assyrtiko B (2), Malvasia Istriana B, Parellada B, Verdejo B, Verdelho B, Xarello B, and 7 black varieties Saperavi N (2), Touriga nacional N, Baga N, Aleatico N, Montepulciano N (2), Primitivo N (3), Calabrese N (3). Varietals were compared through the following parameters: phenology was assessed by using the information collected in the Database Network of French Vine Conservatories (INRAE-SupAgro-IFV, 2005-2015). The number of inflorescences for shoots from secondary buds and bourillons and suckers were observed to assess post-bud break frost tolerance potential. Grapevine water status was studied through stem water potential measurement, observation of foliage symptoms of drought, and 𝛿13C on must. Frequencies and intensities of downy mildew, powdery mildew, and black rot attacks were estimated before harvest on leaves and clusters and botrytis at harvest to assess disease susceptibilities. Berry composition was monitored from end of veraison until harvest. Yield and mean bunch weight were also calculated. Varieties were then ranked on a 1-4 scale for each parameter and compared through PCA. Forty two stations of the Mediterranean basin were compared by PCA with the Multicriteria Climatic Classification indicators in order to confront the collected information during 2021 campaign to the hypothesis that plants coming from dry and hot regions are genetically adapted to such climatic conditions.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.