Macrowine 2021
IVES 9 IVES Conference Series 9 Wine microbial diversity and cross-over applications: emerging results and future perspectives

Wine microbial diversity and cross-over applications: emerging results and future perspectives

Abstract

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota.

METHODS: Systematic review of the scientific literature, including the evaluation of data from ongoing research projects (‘INVISPUBA’, ‘SPUMAPULIA’ and ‘BE^2R projects, funded by Apulian Region throughout P.S.R. 2014/2020 -Misura 16.2).

RESULTS: For decades, a continuous effort has been carried out worldwide to preserve and exploit the microbial diversity associated with traditional wines and Geographical Indications, including studies on specific autochthonous grape varieties. The oenological significance of an impressive number of eukaryotic and prokaryotic strains have been assessed, including their effects on dessert, flor and sparkling wines. Often these biological resources are preserved in culture collections, favouring exchanges in food uses (De Vero et al., 2019). The review proposes an overview of the phenotypic characteristics of wine microbes of potential interest for the design of cross-over strategies, with the desired modulation of ‘food qualities’ and safety enhancement. The application of wine strains as a sustainable driver of innovation in other fermented foods (e.g. bread) (Capozzi et al., 2016), alcoholic beverages (e.g. bread and fruity wines) (Agarbati et al., 2020; Canonico et al., 2021; Vilela et al., 2020), and for the development of new fermented products is discussed.

CONCLUSIONS: The proposed overview of the scientific literature i) underlines a high potential of innovation related to wine ‘microbiodiversity’ and ii) emphasises the importance of culture collections in the light of cross-over applications. The review also underlines the chance to explore innovative regional paths exploiting the exchange of microbial resources from traditional fermented products to other agri-food chains.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vittorio Capozzi, Nicola DE SIMONE,  Mariagiovanna, FRAGASSO, Bari. Franco, Giuseppe, SPANO, Maria TUFARIELLO, Pasquale RUSSO, Giancarlo, PERRONE, Lecce Francesco

Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Foggia, Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), BIASIOLI, Research and Innovation Centre, Fondazione Edmund Mach. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), GRIECO, Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Lecce

Contact the author

Keywords

non-saccharomycessaccharomyces, malolactic bacteria, wine, sparkling wine, microbial terroir, beer, fruity wine, bread, quality, safety

Citation

Related articles…

The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

Disease resistant hybrid grape cultivars are now allowed in a number of EU wine PDOs, and are also accepted in a number of countries outside the EU. There is increasing interest in diseases resistant hybrid grape cultivars (RHGCs) because they allow for the production of healthy, high quality grapes with limited use of pesticides and the associated environmental and public health

Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand

Vine genetics, fruit maturity, region and vineyard are perceived as factors that strongly influence Pinot noir grape and wine composition. Our study aims to understand the relationship between grape (and ultimately wine) composition and the physical appearance and performance characteristics of a vine (i.e. vine ideotype). Our experimental approach controlled these variables by

The challenge of viticultural landscapes

Le monde vitivinicole est de plus en plus concerné par la question paysagère : l’enjeu est de taille puisqu’il s’agit de la survie de l’image positive dont bénéficient les Appellations d’Origine Contrôlée. Les paysages sont composés d’éléments qui renvoient à des références socioculturelles fortes, susceptibles de modeler l’image d’un produit et d’en déterminer à notoriété et le prix. Dans un monde médiatisé comme le nôtre, le visuel construit l’arrière-plan des représentations mentales associées à toute marchandise ; et pour les aliments, produits de la terre, ce visuel est forcément paysager.

Cépage “Baga” région Bairrada. 2- De la conduite traditionnelle jusqu’au système ‘Lys’

Dans la Région de la Bairrada (Litoral-Centre du Portugal), on a étudié au 1999, l’influence des différents systèmes de conduite sur le cépage rouge “Baga”, le plus important de la Région.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.