Macrowine 2021
IVES 9 IVES Conference Series 9 Wine microbial diversity and cross-over applications: emerging results and future perspectives

Wine microbial diversity and cross-over applications: emerging results and future perspectives

Abstract

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota.

METHODS: Systematic review of the scientific literature, including the evaluation of data from ongoing research projects (‘INVISPUBA’, ‘SPUMAPULIA’ and ‘BE^2R projects, funded by Apulian Region throughout P.S.R. 2014/2020 -Misura 16.2).

RESULTS: For decades, a continuous effort has been carried out worldwide to preserve and exploit the microbial diversity associated with traditional wines and Geographical Indications, including studies on specific autochthonous grape varieties. The oenological significance of an impressive number of eukaryotic and prokaryotic strains have been assessed, including their effects on dessert, flor and sparkling wines. Often these biological resources are preserved in culture collections, favouring exchanges in food uses (De Vero et al., 2019). The review proposes an overview of the phenotypic characteristics of wine microbes of potential interest for the design of cross-over strategies, with the desired modulation of ‘food qualities’ and safety enhancement. The application of wine strains as a sustainable driver of innovation in other fermented foods (e.g. bread) (Capozzi et al., 2016), alcoholic beverages (e.g. bread and fruity wines) (Agarbati et al., 2020; Canonico et al., 2021; Vilela et al., 2020), and for the development of new fermented products is discussed.

CONCLUSIONS: The proposed overview of the scientific literature i) underlines a high potential of innovation related to wine ‘microbiodiversity’ and ii) emphasises the importance of culture collections in the light of cross-over applications. The review also underlines the chance to explore innovative regional paths exploiting the exchange of microbial resources from traditional fermented products to other agri-food chains.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vittorio Capozzi, Nicola DE SIMONE,  Mariagiovanna, FRAGASSO, Bari. Franco, Giuseppe, SPANO, Maria TUFARIELLO, Pasquale RUSSO, Giancarlo, PERRONE, Lecce Francesco

Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Foggia, Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), BIASIOLI, Research and Innovation Centre, Fondazione Edmund Mach. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), GRIECO, Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Lecce

Contact the author

Keywords

non-saccharomycessaccharomyces, malolactic bacteria, wine, sparkling wine, microbial terroir, beer, fruity wine, bread, quality, safety

Citation

Related articles…

Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

The prospective study of the French wine sector (Sebillotte et al., 2004) has identified “groups of micro-scenarios” at the end of the analysis of the characteristics of this wine sector.

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

The Wine Active Compounds (WAC) conference 2022

The 5th edition of the International Conference Series on Wine Active Compounds (WAC) will be held from 29 June to 1 July 2022 (Dijon, France). All authors with accepted abstracts will have the possibility to publish either a short 4-pages article or a...

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.