Macrowine 2021
IVES 9 IVES Conference Series 9 Wine microbial diversity and cross-over applications: emerging results and future perspectives

Wine microbial diversity and cross-over applications: emerging results and future perspectives

Abstract

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota.

METHODS: Systematic review of the scientific literature, including the evaluation of data from ongoing research projects (‘INVISPUBA’, ‘SPUMAPULIA’ and ‘BE^2R projects, funded by Apulian Region throughout P.S.R. 2014/2020 -Misura 16.2).

RESULTS: For decades, a continuous effort has been carried out worldwide to preserve and exploit the microbial diversity associated with traditional wines and Geographical Indications, including studies on specific autochthonous grape varieties. The oenological significance of an impressive number of eukaryotic and prokaryotic strains have been assessed, including their effects on dessert, flor and sparkling wines. Often these biological resources are preserved in culture collections, favouring exchanges in food uses (De Vero et al., 2019). The review proposes an overview of the phenotypic characteristics of wine microbes of potential interest for the design of cross-over strategies, with the desired modulation of ‘food qualities’ and safety enhancement. The application of wine strains as a sustainable driver of innovation in other fermented foods (e.g. bread) (Capozzi et al., 2016), alcoholic beverages (e.g. bread and fruity wines) (Agarbati et al., 2020; Canonico et al., 2021; Vilela et al., 2020), and for the development of new fermented products is discussed.

CONCLUSIONS: The proposed overview of the scientific literature i) underlines a high potential of innovation related to wine ‘microbiodiversity’ and ii) emphasises the importance of culture collections in the light of cross-over applications. The review also underlines the chance to explore innovative regional paths exploiting the exchange of microbial resources from traditional fermented products to other agri-food chains.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vittorio Capozzi, Nicola DE SIMONE,  Mariagiovanna, FRAGASSO, Bari. Franco, Giuseppe, SPANO, Maria TUFARIELLO, Pasquale RUSSO, Giancarlo, PERRONE, Lecce Francesco

Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Foggia, Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), BIASIOLI, Research and Innovation Centre, Fondazione Edmund Mach. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), GRIECO, Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Lecce

Contact the author

Keywords

non-saccharomycessaccharomyces, malolactic bacteria, wine, sparkling wine, microbial terroir, beer, fruity wine, bread, quality, safety

Citation

Related articles…

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process.

High resolution climate spatial analysis of European winegrowing regions

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties.

Multicriteria assessment of 11 agroecological viticulture systems during six years

Context and purpose of the study. Modern conventional agriculture, including viticulture, relies greatly on the use of chemical inputs, especially synthetic pesticides.

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.