Macrowine 2021
IVES 9 IVES Conference Series 9 Wine microbial diversity and cross-over applications: emerging results and future perspectives

Wine microbial diversity and cross-over applications: emerging results and future perspectives

Abstract

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota.

METHODS: Systematic review of the scientific literature, including the evaluation of data from ongoing research projects (‘INVISPUBA’, ‘SPUMAPULIA’ and ‘BE^2R projects, funded by Apulian Region throughout P.S.R. 2014/2020 -Misura 16.2).

RESULTS: For decades, a continuous effort has been carried out worldwide to preserve and exploit the microbial diversity associated with traditional wines and Geographical Indications, including studies on specific autochthonous grape varieties. The oenological significance of an impressive number of eukaryotic and prokaryotic strains have been assessed, including their effects on dessert, flor and sparkling wines. Often these biological resources are preserved in culture collections, favouring exchanges in food uses (De Vero et al., 2019). The review proposes an overview of the phenotypic characteristics of wine microbes of potential interest for the design of cross-over strategies, with the desired modulation of ‘food qualities’ and safety enhancement. The application of wine strains as a sustainable driver of innovation in other fermented foods (e.g. bread) (Capozzi et al., 2016), alcoholic beverages (e.g. bread and fruity wines) (Agarbati et al., 2020; Canonico et al., 2021; Vilela et al., 2020), and for the development of new fermented products is discussed.

CONCLUSIONS: The proposed overview of the scientific literature i) underlines a high potential of innovation related to wine ‘microbiodiversity’ and ii) emphasises the importance of culture collections in the light of cross-over applications. The review also underlines the chance to explore innovative regional paths exploiting the exchange of microbial resources from traditional fermented products to other agri-food chains.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vittorio Capozzi, Nicola DE SIMONE,  Mariagiovanna, FRAGASSO, Bari. Franco, Giuseppe, SPANO, Maria TUFARIELLO, Pasquale RUSSO, Giancarlo, PERRONE, Lecce Francesco

Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Foggia, Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), BIASIOLI, Research and Innovation Centre, Fondazione Edmund Mach. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Department of Agriculture, Food, Natural Science, Engineering, University of Foggia. Institute of Sciences of Food Production, National Research Council of Italy (CNR), GRIECO, Institute of Sciences of Food Production, National Research Council of Italy (CNR) – Lecce

Contact the author

Keywords

non-saccharomycessaccharomyces, malolactic bacteria, wine, sparkling wine, microbial terroir, beer, fruity wine, bread, quality, safety

Citation

Related articles…

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector.

Amyndeon‐naoussa: the two faces of Xinomavro

Xinomavro is the most important indigenous red wine variety grown in Northern Greece. It participates in the production of several PGI wines in Macedonia while from 100% Xinomavro the PDO “Amyndeon” and “Naoussa” are produced. The viticultural area of Amyndeon lies in a plateau of 550 ‐700 m of altitude, in a semi‐continental climate with mostly deep sandy loamy soils derived from limestone and marl bedrocks while in Naoussa, Xinomavro is grown in a Mediterranean climate on more heavy textured soils, sandy clay loam to clay, derived from ophiolithic, limestone and marl bedrocks, in an altitude which varies from 150 to 400 m. Different soil, climate and viticultural technique interactions, result in great variability with respect to morphological, ampelographical and physiological characters of Xinomavro as well as in the characteristics of the wines produced. 

Valorization of wine lees for oenological interest by eco-responsible processes

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.