Chitosan from mushroom by-products: sustainable extraction process and winemaking application
Abstract
Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. Chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (dd) and molecular weight (mw), it shows variable properties that differ from those of other natural polysaccharides. It is an outstanding polymer with low toxicity, high biodegradability, chelating, anticoagulant, antioxidant, and antimicrobial activities. Fungal chitosan from aspergillus niger is the only type accepted in winemaking to avoid any potential concerns about allergenicity because of the crustacean raw material. The addition to wines is currently aimed at controlling unwanted microbial growth, particularly brettanomyces spp., preventing iron and copper casses, and removing heavy metals and ochratoxin a. The addition of fungal chitosan in musts and wines has also been successfully authorized for fining and clarification purposes to reduce turbidity by precipitating suspended particles or proteinaceous matter. The recommended doses of chitosan range from 10 g/hl to 500 g/hl for microbial control, iron and copper haze prevention, and heavy metal and contaminant reduction. This limit is set at 100 g/hl only for fining purposes. The conventional production of chitin and chitosan involves deproteinization, demineralization, decolorization, and deacetylation steps. Acid, alkaline, or enzymatic processes are commonly performed. However, these methods are long-time consuming, low-efficient, and require large volumes of solvents and hazardous chemicals. Several greener strategies and technologies have been proposed. Subcritical water technology is one of the most promising and versatile processes. Subcritical water extraction (swe) is usually conducted at temperatures ranging from 100 to 374°c, under sufficient pressure to keep water in a liquid state. Swe offers several advantages, including fast reaction rates, the replacement of acids/bases with a more environmentally sustainable solvent, and its properties can be finely modulated. Moreover, the identification of new undervalued and unexploited biomasses, such as edible mushroom by-products, should also be promoted for eco-friendlier chitosan production. In the present work, a sustainable extraction process with subcritical water from mushroom (pleourotus ostreatus) by-products was performed. Swe allowed a 4.5-fold increase in extraction yield and a 4-fold reduction in process time. The chitin and chitosan were characterized and compared with conventional ones. Significant effects were pointed out on some chemical properties, such as deacetylation degree, crystallinity index, and chromatic properties, according to the adopted subcritical conditions. The swe chitosan was also studied for winemaking purposes. Several experimental trials were performed at different dosages (0-100 g/hl), on several unstable white wines, aimed to point out significant interactions with proteins, polyphenols, and aroma compounds. Positive effects were highlighted on some analytical indices related to wine protein stability, and a significant decrease in unstable proteins was detected, for both chitinases and thaumatin-like proteins (tlps). The swe chitosan didn’t affect the chromatic characteristics of wines or the total polyphenol content. Moreover, the chromatographic analysis of volatile compounds showed no significant effects on the main chemical classes. Further research is already undergone, aimed at deeply investigating the effect of subcritical water at different conditions on the chitosan polymeric structure and its functionality for winemaking applications.
Quitosano a partir de subproductos de hongos: proceso de extracción sostenible y aplicación enológica
El quitosano es un biopolímero obtenido industrialmente a partir de la desacetilación de la quitina, el segundo polisacárido más abundante del planeta, después de la celulosa. Se extrae de diversos recursos terrestres y marinos, como crustáceos y hongos. El quitosano tiene un carácter policatiónico debido a los grupos aminos libres a lo largo de su columna vertebral química, y dependiendo de su grado de desacetilación (dd) y del peso molecular (mw), muestra propiedades variables que difieren de las de otros polisacáridos naturales. El quitosano fúngico procedente de aspergillus niger es el único tipo aceptado en la elaboración del vino para evitar cualquier posible preocupación por la alergenicidad debida a la materia prima crustácea. En la actualidad, la adición a los vinos tiene por objeto controlar el crecimiento microbiano no deseado, en particular de brettanomyces spp., evitar la quiébra de hierro y cobre o eliminar metales pesados y ocratoxina a. También se ha autorizado con éxito la adición de quitosano fúngico en mostos y vinos para la clarificación. Las dosis recomendadas de quitosano oscilan entre 10 g/hl y 500 g/hl para el control microbiano, la prevención de las quiébras y la reducción de metales pesados y contaminantes. Este límite se fija en 100 g/hl sólo a efectos de clarificación. La producción convencional de quitina y quitosano implica etapas de desproteinización, desmineralización, decoloración y desacetilación. Normalmente se utilizan procesos ácidos, alcalinos o enzimáticos. Sin embargo, estos métodos llevan mucho tiempo, son poco eficientes y requieren grandes volúmenes de disolventes y productos químicos peligrosos. Se han propuesto varias estrategias y tecnologías más ecológicas. La tecnología del agua subcrítica es uno de los procesos más prometedores y versátiles. La extracción de agua subcrítica (swe) suele realizarse a temperaturas que oscilan entre los 100 y los 374 °c, a una presión suficiente para mantener el agua en estado líquido. La swe ofrece varias ventajas, como la rapidez de reacción, la sustitución de ácidos/bases por un disolvente más sostenible desde el punto de vista medioambiental, y sus propiedades pueden modularse con precisión. Además, se debería promover la identificación de nuevas biomasas inexplotadas, como los subproductos comestibles de las setas, para la producción de quitosano más respetuoso con el medio ambiente. El presente trabajo presenta un proceso de extracción sostenible con agua subcrítica a partir de subproductos de setas (pleourotus ostreatus). El swe permitió multiplicar por 4,5 el rendimiento de extracción y reducir a un cuarto el tiempo del proceso. La quitina y el quitosano han sido caracterizados y comparados con otros convencionales, incluyendo el grado de desacetilación, el índice de cristalinidad y las propiedades cromáticas, según las condiciones subcríticas adoptadas. También se estudió el quitosano swe con fines enológicos. Se realizaron varias pruebas experimentales a diferentes dosis (0-100 g/hl) en varios vinos blancos inestables, con el objetivo de señalar interacciones significativas con proteínas, polifenoles y compuestos aromáticos. Los resultados destacan los efectos positivos sobre algunos índices analíticos relacionados con la estabilidad de las proteínas del vino, y una disminución significativa de las proteínas inestables, tanto para las quitinasas como para las proteínas taumatin-like (tlp). El quitosano swe no afectó a las características cromáticas de los vinos ni al contenido total de polifenoles. Además, el análisis cromatográfico de los compuestos volátiles no mostró efectos significativos sobre las principales clases químicas. Nuevas investigaciones son actualmente objeto de análisis para estudiar en profundidad el efecto del agua subcrítica en diferentes condiciones sobre la estructura polimérica del quitosano y su funcionalidad para aplicaciones enológicas.
Chitosano da sottoprodotti dei funghi: processo di estrazione sostenibile e applicazione enologica
Il chitosano è un biopolimero ottenuto industrialmente dalla deacetilazione della chitina, il secondo polisaccaride più presente sulla terra, dopo la cellulosa.viene estratto da diverse fonti naturali, tra cui crostacei e funghi. Il chitosano ha una natura policationica dovuta ai gruppi amminici liberi presenti nella struttura chimica, e in funzione del grado di deacetilazione e del peso molecolare, presenta proprietà variabili che differiscono dagli altri polisaccaridi in natura. Il chitosano ottenuto da aspergillus niger è l’unico permesso per un utilizzo enologico, al fine di evitare potenziali problemi allergenici dovuti all’utilizzo di chitosano ottenuto da crostacei. L’uso enologico è finalizzato al controllo di crescite microbiche indesiderate, nello specifico di brettanomyces spp., alla prevenzione delle casse ferrica e rameica, e alla rimozione di metalli pesanti e dell’ocratossina a. L’utilizzo del chitosano nei mosti e vini è stata autorizzata anche per scopi di chiarifica e affinamento. Le dosi raccomandate di chitosano sono comprese tra 10 g/hl e 500 g/hl per il controllo microbico, l’instabilità ferrica e rameica, la riduzione dei metalli pesanti e di altri contaminanti. La dose massima è ridotta a 100 g/hl solo ad uso chiarificante. La produzione convenzionale di chitosano prevede diverse fasi: deproteinizzazione, demineralizzazione, decolorazione e deacetilazione. Sono generalmente processi chimici che prevedono l’utilizzo di acidi o basi, oppure processi di tipo enzimatico. Tuttavia, questi metodi richiedono lunghi tempi, hanno una bassa efficienza, e richiedono grandi volumi di solventi e prodotti chimici pericolosi. Sono state proposte diverse tecnologie maggiormente sostenibili. La tecnologia dell’acqua allo stato subcritico è una delle più promettenti. L’estrazione con acqua subcritica (swe) viene generalmente effettuata ad una temperatura compresa tra 100 e 374°c, e ad una pressione sufficiente da mantenere l’acqua allo stato liquido. L’swe presenta diversi vantaggi, tra cui elevate velocità di reazione, l’utilizzo di un solvente ecocompatibile, e le sue proprietà possono essere facilmente modulate. Inoltre, l’identificazione e l’utilizzo di nuove biomasse scarsamente utilizzate e di basso valore, come ad esempio i sottoprodotti dalla coltivazione dei funghi, favorirebbe una produzione di chitosano maggiormente ecocompatibile. Nel presente lavoro, è stato studiato un processo di estrazione sostenibile di chitosano da sottoprodotti dei funghi (pleourotus ostreatus) mediante acqua subcritica. L’swe ha permesso di aumentare di 4.5 volte la resa di estrazione, e di ridurre di 4 volte il tempo di processo. La chitina e il chitosano sono stati caratterizzati e confrontati con quelli ottenuti dal processo convenzionale. Sono stati evidenziati effetti significativi su alcune caratteristiche chimiche, quali il grado di acetilazione, l’indice di cristallinità e le caratteristiche cromatiche, in funzione delle diverse condizioni swe adottate. Il chitosano ottenuto da swe è stato valutato anche per un utilizzo enologico. Sono state effettuate aggiunte a diversi vini bianchi instabili, a diversi dosaggi (0-100 g/hl), con la finalità di evidenziare possibili interazioni con proteine, polifenoli e composti aromatici. Effetti positivi sono stati evidenziati su alcuni parametri analitici relativi alla stabilità proteica dei vini, ed è stata evidenziata una significativa diminuzione del contenuto di proteine instabili, sia chitinasi che taumatine. L’aggiunta di chitosano swe non ha determinato cambiamenti significativi sul colore del vino e sul contenuto di polifenoli. Inoltre, l’analisi cromatografica della frazione volatile non ha evidenziato cambiamenti significativi delle principali classi di composti. Ulteriori ricerche sono già in corso, con la finalità di studiare l’effetto di diverse condizioni estrattive con acqua subcritica sulla struttura polimerica del chitosano e sulle sue funzionalità a scopo enologico.
Issue: OIV 2024
Type: Article
Authors
¹ University of Udine, via Sondrio 2/a, Udine, Italy
² Edmund Mach Foundation, via Edmund Mach, 1, San Michele all’Adige, Italy
³ University of Udine, via delle Scienze 206, Udine, Italy