Macrowine 2021
IVES 9 IVES Conference Series 9 Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Abstract

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed. The fight against fraud to safeguard high-quality productions requires an effective varietal identification system applicable in musts and wines.

METHODS: Single-nucleotide polymorphisms (SNPs) are considered the newest type of molecular marker for grapevine identification. We developed and investigated the efficiency of SNP TaqMan® assays in the varietal authentication of ‘Nebbiolo’ musts and wines. ‘Nebbiolo’-specific SNPs were identified starting from available databases and 260 genotypes analysed by Vitis18kSNP array.

RESULTS: Only two markers (SNP_15082 and SNP_14783) were sufficient to distinguish ‘Nebbiolo’ from more than 1,100 genotypes. In experimental vinifications, these SNP TaqMan® assays correctly identified ‘Nebbiolo’ in all wine-making steps, including wines 1 year after bottling. The high sensitivity of the assays allowed identifying, for the first time, mixtures of 1% in musts at the end of maceration, blends of 10% in musts at the end of malolactic fermentation and wines contamination of 10–20% with non-‘Nebbiolo’ genotypes. In commercial wines, the amplification efficiency of these SNPs was partially limited by the low amount of grapevine DNA and the presence of PCR inhibitors in DNA extracts. However, at least one SNP amplified correctly in all the commercial wines tested.

CONCLUSIONS:

The TaqMan® genotyping assay is a rapid, highly sensitive and specific methodology with remarkable potential for varietal identification in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giorgio Gambino, Paolo BOCCACCI, Walter CHITARRA, Anna SCHNEIDER

Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Council for Agricultural Research and Economics, Viticultural and Enology Research Centre (CREA-VE). Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Luca ROLLE, Department of Agricultural, Forest and Food Sciences, University of Torino. Largo Braccini 2, 10095 Grugliasco (TO), Italy.

Contact the author

Keywords

grapevine, musts, wines, genetic traceability, snp, blends

Citation

Related articles…

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.
The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC.

Ethanol reduces grapevine water consumption by limiting transpiration

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 µM to 10 mM).

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

Impact of the non-volatile matrix composition on red wine aroma release and perception of olfactory and oral cues

Aroma and mouthfeel cues are the main characteristics defining red wine quality. During wine tasting, perceptual and physical-chemical phenomena leading to mutual interactions between volatiles and non-volatiles sensory active compounds, can occur. Aroma perception depends on the release of volatiles from wine, that is affected by wine constituents present in the medium (Pittari et al. 2021; Lyu et al. 2021). Our aim was to evaluate the effect of the non-volatile wine matrix composition (polyphenols, PPh) on the release and perception of red wine aromas by an experiment of matrix enrichment.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.