Macrowine 2021
IVES 9 IVES Conference Series 9 Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Abstract

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed. The fight against fraud to safeguard high-quality productions requires an effective varietal identification system applicable in musts and wines.

METHODS: Single-nucleotide polymorphisms (SNPs) are considered the newest type of molecular marker for grapevine identification. We developed and investigated the efficiency of SNP TaqMan® assays in the varietal authentication of ‘Nebbiolo’ musts and wines. ‘Nebbiolo’-specific SNPs were identified starting from available databases and 260 genotypes analysed by Vitis18kSNP array.

RESULTS: Only two markers (SNP_15082 and SNP_14783) were sufficient to distinguish ‘Nebbiolo’ from more than 1,100 genotypes. In experimental vinifications, these SNP TaqMan® assays correctly identified ‘Nebbiolo’ in all wine-making steps, including wines 1 year after bottling. The high sensitivity of the assays allowed identifying, for the first time, mixtures of 1% in musts at the end of maceration, blends of 10% in musts at the end of malolactic fermentation and wines contamination of 10–20% with non-‘Nebbiolo’ genotypes. In commercial wines, the amplification efficiency of these SNPs was partially limited by the low amount of grapevine DNA and the presence of PCR inhibitors in DNA extracts. However, at least one SNP amplified correctly in all the commercial wines tested.

CONCLUSIONS:

The TaqMan® genotyping assay is a rapid, highly sensitive and specific methodology with remarkable potential for varietal identification in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giorgio Gambino, Paolo BOCCACCI, Walter CHITARRA, Anna SCHNEIDER

Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Council for Agricultural Research and Economics, Viticultural and Enology Research Centre (CREA-VE). Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Luca ROLLE, Department of Agricultural, Forest and Food Sciences, University of Torino. Largo Braccini 2, 10095 Grugliasco (TO), Italy.

Contact the author

Keywords

grapevine, musts, wines, genetic traceability, snp, blends

Citation

Related articles…

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

High-altitude vineyards under extreme conditions in the PIWI context of cultivation: economic and marketing evidence from an exploratory study in Northern Italy

Viticulture has spread to unexpected locations, such as high-altitude terrain. Among these, high-altitude viticulture has captured considerable attention, not only for the uniqueness of its products and landscapes but also because it offers an effective response to climate changes
The aim of this study is to analyse and compare wineries that used Piwi varieties (acronym for the German Pilzwiderstandfähig, i.e., cryptogame-resistant) at high altitudes (between 500 and 920 m a.s.l.) with the traditional non-mountainous viticulture model.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.