Macrowine 2021
IVES 9 IVES Conference Series 9 Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Abstract

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed. The fight against fraud to safeguard high-quality productions requires an effective varietal identification system applicable in musts and wines.

METHODS: Single-nucleotide polymorphisms (SNPs) are considered the newest type of molecular marker for grapevine identification. We developed and investigated the efficiency of SNP TaqMan® assays in the varietal authentication of ‘Nebbiolo’ musts and wines. ‘Nebbiolo’-specific SNPs were identified starting from available databases and 260 genotypes analysed by Vitis18kSNP array.

RESULTS: Only two markers (SNP_15082 and SNP_14783) were sufficient to distinguish ‘Nebbiolo’ from more than 1,100 genotypes. In experimental vinifications, these SNP TaqMan® assays correctly identified ‘Nebbiolo’ in all wine-making steps, including wines 1 year after bottling. The high sensitivity of the assays allowed identifying, for the first time, mixtures of 1% in musts at the end of maceration, blends of 10% in musts at the end of malolactic fermentation and wines contamination of 10–20% with non-‘Nebbiolo’ genotypes. In commercial wines, the amplification efficiency of these SNPs was partially limited by the low amount of grapevine DNA and the presence of PCR inhibitors in DNA extracts. However, at least one SNP amplified correctly in all the commercial wines tested.

CONCLUSIONS:

The TaqMan® genotyping assay is a rapid, highly sensitive and specific methodology with remarkable potential for varietal identification in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giorgio Gambino, Paolo BOCCACCI, Walter CHITARRA, Anna SCHNEIDER

Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Council for Agricultural Research and Economics, Viticultural and Enology Research Centre (CREA-VE). Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Luca ROLLE, Department of Agricultural, Forest and Food Sciences, University of Torino. Largo Braccini 2, 10095 Grugliasco (TO), Italy.

Contact the author

Keywords

grapevine, musts, wines, genetic traceability, snp, blends

Citation

Related articles…

Influence of light exclusion on anthocyanin composition in ‘Cabernet sauvignon’

The aim of this study was to determine how artificial shading influenced berry development and anthocyanin accumulation in ‘Cabernet sauvignon’. Opaque polypropylene boxes were applied to grape bunches over three different developmental stages.

Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

The type of wine is determined by environmental, plant materials and human factors. These factors are numerous and interact together, which makes it difficult to determine the hierarchy of their effects

Landscape qualities and keys for action

Parallèlement à la connaissance des aptitudes viticoles, le terroir témoigne d’une identité locale, d’une spécificité des conditions de productions et d’une originalité des lieux.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

What metabolomics teaches us about wine shelf life

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique.