Macrowine 2021
IVES 9 IVES Conference Series 9 Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

Abstract

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed. The fight against fraud to safeguard high-quality productions requires an effective varietal identification system applicable in musts and wines.

METHODS: Single-nucleotide polymorphisms (SNPs) are considered the newest type of molecular marker for grapevine identification. We developed and investigated the efficiency of SNP TaqMan® assays in the varietal authentication of ‘Nebbiolo’ musts and wines. ‘Nebbiolo’-specific SNPs were identified starting from available databases and 260 genotypes analysed by Vitis18kSNP array.

RESULTS: Only two markers (SNP_15082 and SNP_14783) were sufficient to distinguish ‘Nebbiolo’ from more than 1,100 genotypes. In experimental vinifications, these SNP TaqMan® assays correctly identified ‘Nebbiolo’ in all wine-making steps, including wines 1 year after bottling. The high sensitivity of the assays allowed identifying, for the first time, mixtures of 1% in musts at the end of maceration, blends of 10% in musts at the end of malolactic fermentation and wines contamination of 10–20% with non-‘Nebbiolo’ genotypes. In commercial wines, the amplification efficiency of these SNPs was partially limited by the low amount of grapevine DNA and the presence of PCR inhibitors in DNA extracts. However, at least one SNP amplified correctly in all the commercial wines tested.

CONCLUSIONS:

The TaqMan® genotyping assay is a rapid, highly sensitive and specific methodology with remarkable potential for varietal identification in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giorgio Gambino, Paolo BOCCACCI, Walter CHITARRA, Anna SCHNEIDER

Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Council for Agricultural Research and Economics, Viticultural and Enology Research Centre (CREA-VE). Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy. Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR). Strada delle Cacce 73, 10135 Torino, Italy. Luca ROLLE, Department of Agricultural, Forest and Food Sciences, University of Torino. Largo Braccini 2, 10095 Grugliasco (TO), Italy.

Contact the author

Keywords

grapevine, musts, wines, genetic traceability, snp, blends

Citation

Related articles…

Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Viticulture and oenology face two major challenges today, climate change and the reduction in the use of inputs. Climate change induces low acidity and microbiologically less stable wines

LCA: an effective, generalizable method for wine ecodesign? Advantages and limitations

Life cycle assessment (LCA) is an effective and comprehensive method for evaluating the environmental impact of a product, considering its entire life cycle. In the context of wine production, although the use of lca is gaining ground in viticulture, its application is still limited to the fine assessment of winemaking processes.

How to develop strategies of adaptation to climate change based on a foresight exercise?

Prospective studies raise a real intellectual interest for those who contribute to them or take cognizance of it. But they are often considered too difficult to operationalize

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.