GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Protection of grapevines from red blotch by understanding mechanistic basis of its infection


Context and purpose of the study – Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae. Typical symptoms in red cultivars include red blotches in leaves of afflicted vines with pinkish red-colored veins without any rolling of the margins observed at the onset of ripening. The objective of this study was to determine as to how the virus enters grapevine and once it enters the vine, how it is distributed throughout the vine.

Material and methods – During the growing season, vine samples were collected from vineyards with a history of Red Blotch (both red and white cultivars) located in Napa/Sonoma counties and the state of Washington. Starting at flowering, shoots (leaf and stem tissues) were sampled for microscopy analysis. These samples were used to determine the structure and functionality of the vascular strands (xylem and phloem) using callose specific dye, aniline blue and various techniques of microscopy.

Results – The afflicted fruits were high in acid but low in sugars causing delay in harvest. Canematuration was poor as evident from uneven browning characterized by areas of green and brown color. Typically, green stems fail to turn brown when the periderm is not formed indicating that the GRBaV interferes with cane maturation process. Callose (a carbohydrate substance) accumulated in the phloem cells of afflicted vines. Such deposition indicated that the GRBaV is primarily confined to phloem sieve tubes. Since callose deposits limit pathogen dispersal, this phenomenon could be used as a diagnostic indication of Red Blotch. Similarly, in the context of vascular blockage, the xylem vessels of afflicted canes showed tylosis, which is ballooning of neighboring xylem parenchyma cells into the lumen of the vessels. These observations indicated that even though the GRBaV enters grapevine via the phloem, both xylem and phloem responded to the virus invasion. This is an interesting observation and needs further investigation as tylosis typically occurs only when the xylem is injured either by pruning or occluded with bacteria. Vessels of healthy canes remained free of tylose. These results added a new dimension to viral diseases, especially Red Blotch and might provide a framework for developing management strategies to minimize the incidence of Red Blotch in grape growing regions worldwide.


Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster


Bhaskar BONDADA1*, Paul SKINNER2, Marc FUCHS3, and Andrew WALKER4

1 Washington State University, Richland, WA 99354, USA
2 Vineyard Investigations, St. Helena, CA 94574, USA
3 Cornell University, Geneva, NY 14456, USA
4 University of California, Davis, CA 95616, USA

Contact the author


callose, grapevine, phloem, red blotch, tylosis, xylem


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.


Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

New acacia gums fractions: how their features affect the foamability of sparkling base wines?

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.