Macrowine 2021
IVES 9 IVES Conference Series 9 Does bioprotection by adding yeasts present antioxydant properties?

Does bioprotection by adding yeasts present antioxydant properties?

Abstract

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable. Bioprotection allows the control of microbial communities by occupying the grape must niche (Simonin et al., 2018; Windholtz et al., 2021), but no studies have been conducted on its antioxidant properties. Indeed, in must, reaction cascades can take place, bringing into play different compounds that can lead to its undesired browning under the action of polyphenols oxydases. SO2 neutralizes these enzymes and regenerates the quinones. In the present study, bioprotection have been considered for its action on oxidation and on the availability of dissolved oxygen (O2).

METHODS: In order to evaluate the potential impact of bioprotection on dissolved O2 content, an experiment was conducted using semillon must. Three treatments were applicated: SO2 at 50 mg/L, without SO2 and bioprotection composed of two yeast species (Torulaspora delbrueckii and Metschnikowia pulcherrima in the same proportion) at 50 mg/L. O2 concentration was monitored during pre-fermentation phase, using a FireStingO2 compact oximeter (pyroscience, Aix-La-Chappelle, Allemagne). The glutathione, a natural antioxydant compound, was quantified in the musts and wines.

RESULTS: Based on dissolved O2 kinetics, the use of bioprotection led to a rapid consumption of O2 and limited browning comparing to the control, without SO2. The addition of SO2,by neutralizing the polyphenol oxydases (Ough and Crowell, 1987), also limited the O2 consumption. Bioprotection treatment allowed obtaining a significant higher concentration of glutathione in the finished wines than the control without SO2, thus allowing an interesting additional protection during bottle aging.

CONCLUSIONS:

For the first time, this work highlighted the limitation of the white must oxidation by using non-Saccharomyces yeasts as bioprotection in a context of without SO2. By decreasing the availability of dissolved oxygen, bioprotection by adding yeast would slowing down the oxidation cascades. Furthermore, preservation of glutathione by bioprotection allows additional protection in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara Windholtz, Claudia, Isabelle, Cécile

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France , NIOI, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline, REDON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France, MASNEUF-POMAREDE, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ; Bordeaux Sciences Agro, Gradignan, France, THIBON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France

Contact the author

Keywords

bioprotection, oxygen consumption, gluthathion, white wine

Citation

Related articles…

Zoning, environment, and landscape: historic and perspective

Dans une approche globale, nous proposons la définition suivante du zonage : “représentation cartographique associée à une sectorisation du territoire en zones unitaires homogènes à partir de facteurs discriminants établis sur la base d’indicateurs quantifiables et d’avis d’experts”. La première application de cette méthode a porté sur la caractérisation du terroir en liaison avec les aspects qualitatifs des vins. Il est également possible d’envisager d’appliquer cette démarche dans les stratégies environnementales et paysagères liées aux approches territoriales et aux pratiques viticoles. Cette méthode peut servir de base dans la mise en œuvre des outils financiers associés aux mesures environnementales (CTE, aides spécifiques).

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.