Macrowine 2021
IVES 9 IVES Conference Series 9 Does bioprotection by adding yeasts present antioxydant properties?

Does bioprotection by adding yeasts present antioxydant properties?

Abstract

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable. Bioprotection allows the control of microbial communities by occupying the grape must niche (Simonin et al., 2018; Windholtz et al., 2021), but no studies have been conducted on its antioxidant properties. Indeed, in must, reaction cascades can take place, bringing into play different compounds that can lead to its undesired browning under the action of polyphenols oxydases. SO2 neutralizes these enzymes and regenerates the quinones. In the present study, bioprotection have been considered for its action on oxidation and on the availability of dissolved oxygen (O2).

METHODS: In order to evaluate the potential impact of bioprotection on dissolved O2 content, an experiment was conducted using semillon must. Three treatments were applicated: SO2 at 50 mg/L, without SO2 and bioprotection composed of two yeast species (Torulaspora delbrueckii and Metschnikowia pulcherrima in the same proportion) at 50 mg/L. O2 concentration was monitored during pre-fermentation phase, using a FireStingO2 compact oximeter (pyroscience, Aix-La-Chappelle, Allemagne). The glutathione, a natural antioxydant compound, was quantified in the musts and wines.

RESULTS: Based on dissolved O2 kinetics, the use of bioprotection led to a rapid consumption of O2 and limited browning comparing to the control, without SO2. The addition of SO2,by neutralizing the polyphenol oxydases (Ough and Crowell, 1987), also limited the O2 consumption. Bioprotection treatment allowed obtaining a significant higher concentration of glutathione in the finished wines than the control without SO2, thus allowing an interesting additional protection during bottle aging.

CONCLUSIONS:

For the first time, this work highlighted the limitation of the white must oxidation by using non-Saccharomyces yeasts as bioprotection in a context of without SO2. By decreasing the availability of dissolved oxygen, bioprotection by adding yeast would slowing down the oxidation cascades. Furthermore, preservation of glutathione by bioprotection allows additional protection in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara Windholtz, Claudia, Isabelle, Cécile

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France , NIOI, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline, REDON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France, MASNEUF-POMAREDE, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ; Bordeaux Sciences Agro, Gradignan, France, THIBON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France

Contact the author

Keywords

bioprotection, oxygen consumption, gluthathion, white wine

Citation

Related articles…

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.