Macrowine 2021
IVES 9 IVES Conference Series 9 Does bioprotection by adding yeasts present antioxydant properties?

Does bioprotection by adding yeasts present antioxydant properties?

Abstract

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable. Bioprotection allows the control of microbial communities by occupying the grape must niche (Simonin et al., 2018; Windholtz et al., 2021), but no studies have been conducted on its antioxidant properties. Indeed, in must, reaction cascades can take place, bringing into play different compounds that can lead to its undesired browning under the action of polyphenols oxydases. SO2 neutralizes these enzymes and regenerates the quinones. In the present study, bioprotection have been considered for its action on oxidation and on the availability of dissolved oxygen (O2).

METHODS: In order to evaluate the potential impact of bioprotection on dissolved O2 content, an experiment was conducted using semillon must. Three treatments were applicated: SO2 at 50 mg/L, without SO2 and bioprotection composed of two yeast species (Torulaspora delbrueckii and Metschnikowia pulcherrima in the same proportion) at 50 mg/L. O2 concentration was monitored during pre-fermentation phase, using a FireStingO2 compact oximeter (pyroscience, Aix-La-Chappelle, Allemagne). The glutathione, a natural antioxydant compound, was quantified in the musts and wines.

RESULTS: Based on dissolved O2 kinetics, the use of bioprotection led to a rapid consumption of O2 and limited browning comparing to the control, without SO2. The addition of SO2,by neutralizing the polyphenol oxydases (Ough and Crowell, 1987), also limited the O2 consumption. Bioprotection treatment allowed obtaining a significant higher concentration of glutathione in the finished wines than the control without SO2, thus allowing an interesting additional protection during bottle aging.

CONCLUSIONS:

For the first time, this work highlighted the limitation of the white must oxidation by using non-Saccharomyces yeasts as bioprotection in a context of without SO2. By decreasing the availability of dissolved oxygen, bioprotection by adding yeast would slowing down the oxidation cascades. Furthermore, preservation of glutathione by bioprotection allows additional protection in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara Windholtz, Claudia, Isabelle, Cécile

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France , NIOI, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline, REDON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France, MASNEUF-POMAREDE, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ; Bordeaux Sciences Agro, Gradignan, France, THIBON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France

Contact the author

Keywords

bioprotection, oxygen consumption, gluthathion, white wine

Citation

Related articles…

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.

Influence of different strains of lab on quality of catarratto wine produced in sicily

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2].

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

The impacts of simulated heatwaves on the induction and maintenance of bud cold tolerance in cultivated and wild-type Vitis species

Low temperatures are required for the acquisition and maintenance of bud cold tolerance, which are necessary for grapevines to survive freezing temperatures in winter.

Caracterización de suelos de la comarca Tacoronte-Acentejo

La comarca Tacoronte-Acentejo, con una extensión cultivada de 2.422 has. concentra un 20% de los viñedos de Canarias.