Macrowine 2021
IVES 9 IVES Conference Series 9 Does bioprotection by adding yeasts present antioxydant properties?

Does bioprotection by adding yeasts present antioxydant properties?

Abstract

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable. Bioprotection allows the control of microbial communities by occupying the grape must niche (Simonin et al., 2018; Windholtz et al., 2021), but no studies have been conducted on its antioxidant properties. Indeed, in must, reaction cascades can take place, bringing into play different compounds that can lead to its undesired browning under the action of polyphenols oxydases. SO2 neutralizes these enzymes and regenerates the quinones. In the present study, bioprotection have been considered for its action on oxidation and on the availability of dissolved oxygen (O2).

METHODS: In order to evaluate the potential impact of bioprotection on dissolved O2 content, an experiment was conducted using semillon must. Three treatments were applicated: SO2 at 50 mg/L, without SO2 and bioprotection composed of two yeast species (Torulaspora delbrueckii and Metschnikowia pulcherrima in the same proportion) at 50 mg/L. O2 concentration was monitored during pre-fermentation phase, using a FireStingO2 compact oximeter (pyroscience, Aix-La-Chappelle, Allemagne). The glutathione, a natural antioxydant compound, was quantified in the musts and wines.

RESULTS: Based on dissolved O2 kinetics, the use of bioprotection led to a rapid consumption of O2 and limited browning comparing to the control, without SO2. The addition of SO2,by neutralizing the polyphenol oxydases (Ough and Crowell, 1987), also limited the O2 consumption. Bioprotection treatment allowed obtaining a significant higher concentration of glutathione in the finished wines than the control without SO2, thus allowing an interesting additional protection during bottle aging.

CONCLUSIONS:

For the first time, this work highlighted the limitation of the white must oxidation by using non-Saccharomyces yeasts as bioprotection in a context of without SO2. By decreasing the availability of dissolved oxygen, bioprotection by adding yeast would slowing down the oxidation cascades. Furthermore, preservation of glutathione by bioprotection allows additional protection in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara Windholtz, Claudia, Isabelle, Cécile

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France , NIOI, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline, REDON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France, MASNEUF-POMAREDE, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ; Bordeaux Sciences Agro, Gradignan, France, THIBON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France

Contact the author

Keywords

bioprotection, oxygen consumption, gluthathion, white wine

Citation

Related articles…

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.

Variability in the content of coarse elements in a viticultural plot in the Graves appellation: relationship with geophysical data

Il a été souvent démontré (Seguin, 1970), que les meilleurs terroirs sont ceux qui présentent pendant la période de maturation du raisin, une régulation et une limitation de l’alimentation hydrique de la vigne. Si on s’intéresse aux facteurs influençant ce régime hydrique, on constate le rôle prépondérant du taux d’éléments grossiers non poreux qui limitent la réserve utile du sol en diminuant le taux de terre fine. De plus, ces éléments grossiers jouent également un rôle au niveau du pédo-climat thermique car leur conductivité thermique et leur chaleur spécifique sont plus élevées que celles de la terre fine. Ainsi le sol se réchauffera et se refroidira plus rapidement (Saini et McLean, 1967), (Gras, 1994).

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.