Macrowine 2021
IVES 9 IVES Conference Series 9 Does bioprotection by adding yeasts present antioxydant properties?

Does bioprotection by adding yeasts present antioxydant properties?

Abstract

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable. Bioprotection allows the control of microbial communities by occupying the grape must niche (Simonin et al., 2018; Windholtz et al., 2021), but no studies have been conducted on its antioxidant properties. Indeed, in must, reaction cascades can take place, bringing into play different compounds that can lead to its undesired browning under the action of polyphenols oxydases. SO2 neutralizes these enzymes and regenerates the quinones. In the present study, bioprotection have been considered for its action on oxidation and on the availability of dissolved oxygen (O2).

METHODS: In order to evaluate the potential impact of bioprotection on dissolved O2 content, an experiment was conducted using semillon must. Three treatments were applicated: SO2 at 50 mg/L, without SO2 and bioprotection composed of two yeast species (Torulaspora delbrueckii and Metschnikowia pulcherrima in the same proportion) at 50 mg/L. O2 concentration was monitored during pre-fermentation phase, using a FireStingO2 compact oximeter (pyroscience, Aix-La-Chappelle, Allemagne). The glutathione, a natural antioxydant compound, was quantified in the musts and wines.

RESULTS: Based on dissolved O2 kinetics, the use of bioprotection led to a rapid consumption of O2 and limited browning comparing to the control, without SO2. The addition of SO2,by neutralizing the polyphenol oxydases (Ough and Crowell, 1987), also limited the O2 consumption. Bioprotection treatment allowed obtaining a significant higher concentration of glutathione in the finished wines than the control without SO2, thus allowing an interesting additional protection during bottle aging.

CONCLUSIONS:

For the first time, this work highlighted the limitation of the white must oxidation by using non-Saccharomyces yeasts as bioprotection in a context of without SO2. By decreasing the availability of dissolved oxygen, bioprotection by adding yeast would slowing down the oxidation cascades. Furthermore, preservation of glutathione by bioprotection allows additional protection in wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara Windholtz, Claudia, Isabelle, Cécile

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France , NIOI, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline, REDON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France, MASNEUF-POMAREDE, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ; Bordeaux Sciences Agro, Gradignan, France, THIBON, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France

Contact the author

Keywords

bioprotection, oxygen consumption, gluthathion, white wine

Citation

Related articles…

Can grapevine intra-varietal genetic variability be a tool for climate change adaptation? A case study at a hot and dry environment

Climate change projections point to an increase of temperatures and changes in rainfall patterns in the mediterranean region.

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area

Vitamin content of grape musts and yeast nutrition: A review

The management of yeast nutrition is an essential approach for a better control over wine fermentation process. Most of the researches on this subject in the last decades focused on nitrogen nutrition. However, vitamins, while being key compounds for yeast metabolism as co-factors for numerous enzymatic activities, were left mostly unexplored.

New methods and technologies to describe the environment in terroir studies

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics.