terclim by ICS banner
IVES 9 IVES Conference Series 9 Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Abstract

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications. Our research investigates the early GRBV infection stages, aiming to unravel the “arms race” between the plant’s RNAi machinery and the viral counter-defense strategies. Following an Agrobacterium tumefaciens-mediated infiltration with an infectious clone containing the GRBV genome, we detected a peak of viral activity in infected microvine plants one-week post-infection. Small RNA sequencing from infected tissues identified 21, 22, and 24 nucleotides virus-derived small-interfering RNAs (vsiRNAs), suggesting post-transcriptional and transcriptional gene silencing activity. We utilized a custom bioinformatics pipeline to identify GRBV “hotspots,” that were further validated as RNAi precursors through secondary structure predictions. GRBV-targeted bisulfite sequencing revealed hypermethylation within GRBV hotspots, establishing a crucial link between small RNA production and effective methylation of the virus, culminating at 24 days post-infection (dpi).

Examining the plant transcriptome and methylome during early infection dates (3, 6, 12 and 24 dpi) unveiled molecular strategies employed by both organisms to counteract each other. The multilayered OMICs data we generated constitute the foundation for innovative viral defense strategies.  This strategy could enhance GRBV management, ensuring sustainable vineyard practices by integrating molecular biology insights into agriculture.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christian Mandelli1*, Laurent G. Deluc1,2

1 Department of Horticulture, Oregon State University, Corvallis, OR, United States
2 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States

Contact the author*

Keywords

Grapevine Red Blotch Virus (GRBV), Host-virus interactions, small RNA-seq, genome-wide OMICs

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Towards understanding the mechanisms of resistance to grapevine Flavescence dorée

Flavescence dorée (FD) is a very serious grapevine disease, classified as quarantine in europe, where it appeared in the middle of the last century. It is associated with the presence of phytoplasmas, transmitted in the vineyard by a leafhopper of american origin, scaphoideus titanus. FD causes severe wine production losses and often leads to plant death. There are currently no alternative solutions to insecticide treatments against the vector and uprooting diseased vines.

Le aree viticole storiche nel mondo: i loro vitigni, la loro protezione e la tipicità dei vini in esse ottenuti

Il tema da trattare si riferisce ai vari ecosistemi viticoli mondiali, ovviamente non facilmente sintetizzabili in una relazione. Sostanzialmente si richiama

Study and valorization of vineyards “terroirs” in the Val de Loire

Face à la concurrence mondiale, il est indispensable de s’orienter vers des vins de qualité, marqués par une typicité et une authenticité inimitables. Le terroir représente, pour une région donnée, un patrimoine unique et non reproductible, qui peut être valorisé à travers l’origine et les caractéristiques sensorielles du vin.

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.