Macrowine 2021
IVES 9 IVES Conference Series 9 Which heat test really represents the haze risk of a white Sauvignon wine ?

Which heat test really represents the haze risk of a white Sauvignon wine ?

Abstract

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days).

 METHODS: 24 Sauvignon wines (Loire Valley – France) produced during the vintages 2018 and 2019 were studied. Six heat tests were applied on during 5-30-60 min. at 80°C and during 30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under Summer conditions (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

RESULTS: The turbidities of the wines subjected to Summer temperature conditions (35-43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min. at 50°C (0.980

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marchal Richard

Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France., Lecomte Marine  Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Salmon Thomas Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Robillard Bertrand Institut Oenologique de Champagne, Mardeuil, France.

Contact the author

Keywords

wine haze, heat tests, sauvignon, pearson correlations

Citation

Related articles…

Advances in phenology modelling of the grapevine

Historical records of grapevine phenology have been collected over decades throughout different winegrowing regions. These records have demonstrated advances in key developmental stages such as budburst, flowering and veraison because of increased temperatures due to climate change.

Novel ATR-FTIR and UV-Vis spectral markers for assessing the Prooxidant/Antioxidant Balance (PAB) in white wines

The browning index (BI), based on the absorbance at 420 nm, is a common oxidation marker in white wines, typically measured after thermal stress (50–60 °C for 5 up to 12 days) in air-saturated wines.

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as