Macrowine 2021
IVES 9 IVES Conference Series 9 Which heat test really represents the haze risk of a white Sauvignon wine ?

Which heat test really represents the haze risk of a white Sauvignon wine ?

Abstract

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days).

 METHODS: 24 Sauvignon wines (Loire Valley – France) produced during the vintages 2018 and 2019 were studied. Six heat tests were applied on during 5-30-60 min. at 80°C and during 30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under Summer conditions (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

RESULTS: The turbidities of the wines subjected to Summer temperature conditions (35-43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min. at 50°C (0.980

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marchal Richard

Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France., Lecomte Marine  Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Salmon Thomas Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Robillard Bertrand Institut Oenologique de Champagne, Mardeuil, France.

Contact the author

Keywords

wine haze, heat tests, sauvignon, pearson correlations

Citation

Related articles…

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.

Impact of sample size on yield estimation in commercial vineyards

The accurate estimation of yield is a fundamental for suitable viticulture, playing a pivotal role in the planning of logistics, the allocation of resources and the formulation of commercial strategies.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.