Macrowine 2021
IVES 9 IVES Conference Series 9 Which heat test really represents the haze risk of a white Sauvignon wine ?

Which heat test really represents the haze risk of a white Sauvignon wine ?

Abstract

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days).

 METHODS: 24 Sauvignon wines (Loire Valley – France) produced during the vintages 2018 and 2019 were studied. Six heat tests were applied on during 5-30-60 min. at 80°C and during 30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under Summer conditions (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

RESULTS: The turbidities of the wines subjected to Summer temperature conditions (35-43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min. at 50°C (0.980

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marchal Richard

Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France., Lecomte Marine  Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Salmon Thomas Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Robillard Bertrand Institut Oenologique de Champagne, Mardeuil, France.

Contact the author

Keywords

wine haze, heat tests, sauvignon, pearson correlations

Citation

Related articles…

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion