Macrowine 2021
IVES 9 IVES Conference Series 9 Which heat test really represents the haze risk of a white Sauvignon wine ?

Which heat test really represents the haze risk of a white Sauvignon wine ?

Abstract

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days).

 METHODS: 24 Sauvignon wines (Loire Valley – France) produced during the vintages 2018 and 2019 were studied. Six heat tests were applied on during 5-30-60 min. at 80°C and during 30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under Summer conditions (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

RESULTS: The turbidities of the wines subjected to Summer temperature conditions (35-43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min. at 50°C (0.980

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marchal Richard

Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France., Lecomte Marine  Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Salmon Thomas Laboratoire d’Œnologie, Université de Reims, Reims, France. LVBE, Université de Haute-Alsace, Colmar, France.  Robillard Bertrand Institut Oenologique de Champagne, Mardeuil, France.

Contact the author

Keywords

wine haze, heat tests, sauvignon, pearson correlations

Citation

Related articles…

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

Response of grapevine cv. “Tinta Roriz” (vitis vinifera L.) to moderate irrigation in the Douro region, Portugal

The behaviour of cv. “Tinta Roriz” (Vitis vinifera L.), was studied when moderate drip irrigation was applied from veraison to harvest. Field studies were conducted during three growing seasons

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world