Macrowine 2021
IVES 9 IVES Conference Series 9 The valorization of wine lees as a source of mannoproteins for food and wine applications

The valorization of wine lees as a source of mannoproteins for food and wine applications

Abstract

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1]. Recently, some valorization strategies proposed the integrated extraction of ethanol, polyphenols, and tartaric acid, while only a few studies investigated ways to exploit the remaining wine lees’ yeast biomass. In particular, no studies attempted the extraction of mannoproteins (MPs), yeast cell wall polysaccharides with known foaming, emulsifying and wine-stabilizing activities [2], from the wine lees’ yeast biomass. To fill this gap, this research aims at developing an efficient and food-grade method for the extraction of yeast MPs from commercial wine lees, and to test the obtained extracts as wine stabilizers, foaming agents, and food emulsifiers.

METHODS. Several protocols were studied to extract MPs from wine lees. Ultimately, commercial wine yeast lees were extracted at pH 3.4 using an autoclave-based treatment (121°C, 20 min). The obtained MPs extracts were characterized by SEC-HPLC, SDS-PAGE or CI-ELLSA [3]. The functionalities of the MPs’ extracts were tested in wine by assessing their foam-promoting ability and their stabilizing potential against protein and tartrate instabilities. Additionally, MPs extracts were tested as emulsifying and foaming agents in model food matrices. The results were compared to those obtained using commercial MPs-based products and/or MPs extracts from pure cultures of the same yeast strains.

RESULTS. Among the extraction protocols tested, the autoclave emerged as the best performing in terms of extract’s effectiveness and, therefore, it was selected for the subsequent extractions. Firstly, MPs obtained from white winemaking lees positively impacted both wine’s foaming properties (+260% height; +360% stability) and tartrate stability (-11%) compared to untreated wine samples. Conversely, the extracts were ineffective in stabilizing wine against protein haze formation [4]. Subsequently, MPs extracts obtained autoclaving red and white wine lees and tested in model food matrices showed encouraging emulsifying activity (≃55% emulsion stability) and foaming properties (stability >3h). In this case, the extract from red wine lees performed better than its analog derived from the same yeast strain grown in the laboratory, thus suggesting a possible impact of wine polyphenols in enhancing the surfactant action of MPs [5].

CONCLUSIONS

The extraction of MPs from wine lees with a simple and food-grade autoclave-based method can represent an effective valorization strategy that, if integrated with the already available techniques to recover ethanol, tartaric acid, and polyphenols, would result in a better exploitation of this by-product with a consequent improvement of the environmental and economic sustainability of the wine industry.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alberto De Iseppi

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy, Andrea CURIONI1,2; Matteo MARANGON1; Giovanna LOMOLINO1; Simone VINCENZI1,2; Benoit DIVOL3

¹ Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
² Centre for Research in Viticulture and Enology (CIRVE), Conegliano, Italy
³ South African Grape and Wine Research Institute, Stellenbosch University, South Africa

Contact the author

Keywords

wine yeast lees, by-product valorisation, mannoproteins, stability, foam, emulsion

Citation

Related articles…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.