Macrowine 2021
IVES 9 IVES Conference Series 9 The valorization of wine lees as a source of mannoproteins for food and wine applications

The valorization of wine lees as a source of mannoproteins for food and wine applications

Abstract

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1]. Recently, some valorization strategies proposed the integrated extraction of ethanol, polyphenols, and tartaric acid, while only a few studies investigated ways to exploit the remaining wine lees’ yeast biomass. In particular, no studies attempted the extraction of mannoproteins (MPs), yeast cell wall polysaccharides with known foaming, emulsifying and wine-stabilizing activities [2], from the wine lees’ yeast biomass. To fill this gap, this research aims at developing an efficient and food-grade method for the extraction of yeast MPs from commercial wine lees, and to test the obtained extracts as wine stabilizers, foaming agents, and food emulsifiers.

METHODS. Several protocols were studied to extract MPs from wine lees. Ultimately, commercial wine yeast lees were extracted at pH 3.4 using an autoclave-based treatment (121°C, 20 min). The obtained MPs extracts were characterized by SEC-HPLC, SDS-PAGE or CI-ELLSA [3]. The functionalities of the MPs’ extracts were tested in wine by assessing their foam-promoting ability and their stabilizing potential against protein and tartrate instabilities. Additionally, MPs extracts were tested as emulsifying and foaming agents in model food matrices. The results were compared to those obtained using commercial MPs-based products and/or MPs extracts from pure cultures of the same yeast strains.

RESULTS. Among the extraction protocols tested, the autoclave emerged as the best performing in terms of extract’s effectiveness and, therefore, it was selected for the subsequent extractions. Firstly, MPs obtained from white winemaking lees positively impacted both wine’s foaming properties (+260% height; +360% stability) and tartrate stability (-11%) compared to untreated wine samples. Conversely, the extracts were ineffective in stabilizing wine against protein haze formation [4]. Subsequently, MPs extracts obtained autoclaving red and white wine lees and tested in model food matrices showed encouraging emulsifying activity (≃55% emulsion stability) and foaming properties (stability >3h). In this case, the extract from red wine lees performed better than its analog derived from the same yeast strain grown in the laboratory, thus suggesting a possible impact of wine polyphenols in enhancing the surfactant action of MPs [5].

CONCLUSIONS

The extraction of MPs from wine lees with a simple and food-grade autoclave-based method can represent an effective valorization strategy that, if integrated with the already available techniques to recover ethanol, tartaric acid, and polyphenols, would result in a better exploitation of this by-product with a consequent improvement of the environmental and economic sustainability of the wine industry.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alberto De Iseppi

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy, Andrea CURIONI1,2; Matteo MARANGON1; Giovanna LOMOLINO1; Simone VINCENZI1,2; Benoit DIVOL3

¹ Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
² Centre for Research in Viticulture and Enology (CIRVE), Conegliano, Italy
³ South African Grape and Wine Research Institute, Stellenbosch University, South Africa

Contact the author

Keywords

wine yeast lees, by-product valorisation, mannoproteins, stability, foam, emulsion

Citation

Related articles…

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.