Macrowine 2021
IVES 9 IVES Conference Series 9 The valorization of wine lees as a source of mannoproteins for food and wine applications

The valorization of wine lees as a source of mannoproteins for food and wine applications

Abstract

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1]. Recently, some valorization strategies proposed the integrated extraction of ethanol, polyphenols, and tartaric acid, while only a few studies investigated ways to exploit the remaining wine lees’ yeast biomass. In particular, no studies attempted the extraction of mannoproteins (MPs), yeast cell wall polysaccharides with known foaming, emulsifying and wine-stabilizing activities [2], from the wine lees’ yeast biomass. To fill this gap, this research aims at developing an efficient and food-grade method for the extraction of yeast MPs from commercial wine lees, and to test the obtained extracts as wine stabilizers, foaming agents, and food emulsifiers.

METHODS. Several protocols were studied to extract MPs from wine lees. Ultimately, commercial wine yeast lees were extracted at pH 3.4 using an autoclave-based treatment (121°C, 20 min). The obtained MPs extracts were characterized by SEC-HPLC, SDS-PAGE or CI-ELLSA [3]. The functionalities of the MPs’ extracts were tested in wine by assessing their foam-promoting ability and their stabilizing potential against protein and tartrate instabilities. Additionally, MPs extracts were tested as emulsifying and foaming agents in model food matrices. The results were compared to those obtained using commercial MPs-based products and/or MPs extracts from pure cultures of the same yeast strains.

RESULTS. Among the extraction protocols tested, the autoclave emerged as the best performing in terms of extract’s effectiveness and, therefore, it was selected for the subsequent extractions. Firstly, MPs obtained from white winemaking lees positively impacted both wine’s foaming properties (+260% height; +360% stability) and tartrate stability (-11%) compared to untreated wine samples. Conversely, the extracts were ineffective in stabilizing wine against protein haze formation [4]. Subsequently, MPs extracts obtained autoclaving red and white wine lees and tested in model food matrices showed encouraging emulsifying activity (≃55% emulsion stability) and foaming properties (stability >3h). In this case, the extract from red wine lees performed better than its analog derived from the same yeast strain grown in the laboratory, thus suggesting a possible impact of wine polyphenols in enhancing the surfactant action of MPs [5].

CONCLUSIONS

The extraction of MPs from wine lees with a simple and food-grade autoclave-based method can represent an effective valorization strategy that, if integrated with the already available techniques to recover ethanol, tartaric acid, and polyphenols, would result in a better exploitation of this by-product with a consequent improvement of the environmental and economic sustainability of the wine industry.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alberto De Iseppi

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy, Andrea CURIONI1,2; Matteo MARANGON1; Giovanna LOMOLINO1; Simone VINCENZI1,2; Benoit DIVOL3

¹ Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
² Centre for Research in Viticulture and Enology (CIRVE), Conegliano, Italy
³ South African Grape and Wine Research Institute, Stellenbosch University, South Africa

Contact the author

Keywords

wine yeast lees, by-product valorisation, mannoproteins, stability, foam, emulsion

Citation

Related articles…

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment).

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

Local adaptation tools to ensure the viticultural sustainability in a changing climate

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.