Macrowine 2021
IVES 9 IVES Conference Series 9 The valorization of wine lees as a source of mannoproteins for food and wine applications

The valorization of wine lees as a source of mannoproteins for food and wine applications

Abstract

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1]. Recently, some valorization strategies proposed the integrated extraction of ethanol, polyphenols, and tartaric acid, while only a few studies investigated ways to exploit the remaining wine lees’ yeast biomass. In particular, no studies attempted the extraction of mannoproteins (MPs), yeast cell wall polysaccharides with known foaming, emulsifying and wine-stabilizing activities [2], from the wine lees’ yeast biomass. To fill this gap, this research aims at developing an efficient and food-grade method for the extraction of yeast MPs from commercial wine lees, and to test the obtained extracts as wine stabilizers, foaming agents, and food emulsifiers.

METHODS. Several protocols were studied to extract MPs from wine lees. Ultimately, commercial wine yeast lees were extracted at pH 3.4 using an autoclave-based treatment (121°C, 20 min). The obtained MPs extracts were characterized by SEC-HPLC, SDS-PAGE or CI-ELLSA [3]. The functionalities of the MPs’ extracts were tested in wine by assessing their foam-promoting ability and their stabilizing potential against protein and tartrate instabilities. Additionally, MPs extracts were tested as emulsifying and foaming agents in model food matrices. The results were compared to those obtained using commercial MPs-based products and/or MPs extracts from pure cultures of the same yeast strains.

RESULTS. Among the extraction protocols tested, the autoclave emerged as the best performing in terms of extract’s effectiveness and, therefore, it was selected for the subsequent extractions. Firstly, MPs obtained from white winemaking lees positively impacted both wine’s foaming properties (+260% height; +360% stability) and tartrate stability (-11%) compared to untreated wine samples. Conversely, the extracts were ineffective in stabilizing wine against protein haze formation [4]. Subsequently, MPs extracts obtained autoclaving red and white wine lees and tested in model food matrices showed encouraging emulsifying activity (≃55% emulsion stability) and foaming properties (stability >3h). In this case, the extract from red wine lees performed better than its analog derived from the same yeast strain grown in the laboratory, thus suggesting a possible impact of wine polyphenols in enhancing the surfactant action of MPs [5].

CONCLUSIONS

The extraction of MPs from wine lees with a simple and food-grade autoclave-based method can represent an effective valorization strategy that, if integrated with the already available techniques to recover ethanol, tartaric acid, and polyphenols, would result in a better exploitation of this by-product with a consequent improvement of the environmental and economic sustainability of the wine industry.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alberto De Iseppi

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy, Andrea CURIONI1,2; Matteo MARANGON1; Giovanna LOMOLINO1; Simone VINCENZI1,2; Benoit DIVOL3

¹ Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
² Centre for Research in Viticulture and Enology (CIRVE), Conegliano, Italy
³ South African Grape and Wine Research Institute, Stellenbosch University, South Africa

Contact the author

Keywords

wine yeast lees, by-product valorisation, mannoproteins, stability, foam, emulsion

Citation

Related articles…

White grape juice consumption reduce muscle damage parameters in combat athletes

Introduction and objective: the practice of physical exercises in an exhaustive way is related to damage. Muay thai (mt) is a high-intensity sport that demands agility, strength and power, which can lead to fatigue and muscle damage. Grape juice is rich in carbohydrates and antioxidants, which can delay the onset of fatigue and muscle damage. The objective of the study was to evaluate the impact of white grape juice consumption, during 14 days, on muscle damage parameters in tm athletes.

A Viticultural Terroir in Brazil: Change and continuity

The viticultural terroir at the Serra Gaúcha region, in Rio Grande do Sul State, Brazil, is analyzed under historical and sociological viewpoints, aiming to understand the origin of its characteristics, and the risks for its continuity.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Yeasts protein extracts: new low impact tool for wine protein stability

Yeast protein extracts (ypes) have flocculating properties, allowing clarification of musts and wines. They are already authorized by oiv for fining purposes with a maximum dosage limit of 60 g/hl for red wines, and 30 g/hl for musts, white and rosè wines. The extraction of ypes from the cytoplasm of yeasts (saccharomyces spp) cells is defined by the resolution oiv oeno 452-2012, that indicate also some specification of the final product.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.