Macrowine 2021
IVES 9 IVES Conference Series 9 First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

Abstract

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3] Although only trace levels of 3SH are needed to impart perceptible aroma characters of passionfruit and grapefruit, the biogenesis of this compound during fermentation is not yet fully understood.[1,4] The polyfunctional varietal thiols can be produced during fermentation by metabolism of non-volatile precursors such as glutathione and cysteine conjugates of 3SH, however the routes by which these precursors are metabolised are complex, and not fully elucidated.[4]

One precursor of particular interest is the glutathione conjugate to the aldehyde form of 3SH, 3S-glutathionylhexanal (glut-3SH-al). The presence of the aldehyde functional group drastically changes the reactivity of the precursor in wine-like systems. Recent work by this group has shown that this compound can exist as tautomers in solution, suggesting possible new reaction pathways for the metabolism of glut-3SH-al. Additionally, the bisulfite adduct of glut-3SH-al (glut-3SH-SO3) has been identified in wine samples.[5,6] The interconversion of glut-3SH-al and glut-3SH-SO3 is of great interest as this equilibrium will be influenced by the concentrations of both glut-3SH-al and free SO2 in the sample. As such, it is thought that glut-3SH-SO3 may exist in finished wines as a potential reservoir for the release of 3SH which could extend the life of the fruity characters which are so desirable in young white wines.[6]

A method for the extraction and quantification of glut-3SH-al and glut-3SH-SO3 has been developed, using previously synthesised deuterated analogues of these compounds to ensure reliable quantification.[7] The compounds are separated using solid phase extraction (SPE), followed by oxime derivatisation and MRM analysis on an LC-QqQ. This method has been validated using standard addition of synthetic glut-3SH-al and was found to be linear up to 1000 ppb.

Using this method, we have analysed the glut-3SH-al and glut-3SH-SO3 content of laboratory scale synthetic grape media samples before, during, and after fermentation, as well as a selection of commercial wines and grape juices. With the SPE and LC-QqQ analysis described here, the glut-3SH-al and glut-3SH-SO3 content of a wide range of grape derived samples can be measured, a valuable piece of the puzzle in elucidating 3SH biogenesis.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jennifer Muhl

School of Chemical Sciences, The University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, The University of Auckland  Bruno FEDRIZZI, School of Chemical Sciences, The University of Auckland  Rebecca DEED, School of Chemical Sciences, School of Biological Sciences, The University of Auckland

Contact the author

Keywords

3-sulfanylhexan-1-ol, Aroma Precursors, Analytical Method, Isotopic Labelling, LC-MS/MS

Citation

Related articles…

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Sustainable viticulture’ the “semi‐minimal” pruned “hedge” system for grape vines long term experience on cv. Sangiovese (Vitis vinifera L.)

In previous experiments carried out in Bologna on Sangiovese grapevines raised with the Australian “Minimal Pruning” system, it has been shown that this system left an excessive burden of buds on the vine.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

Fingerprinting as approach to unlock black box of taste

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors