Macrowine 2021
IVES 9 IVES Conference Series 9 First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

Abstract

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3] Although only trace levels of 3SH are needed to impart perceptible aroma characters of passionfruit and grapefruit, the biogenesis of this compound during fermentation is not yet fully understood.[1,4] The polyfunctional varietal thiols can be produced during fermentation by metabolism of non-volatile precursors such as glutathione and cysteine conjugates of 3SH, however the routes by which these precursors are metabolised are complex, and not fully elucidated.[4]

One precursor of particular interest is the glutathione conjugate to the aldehyde form of 3SH, 3S-glutathionylhexanal (glut-3SH-al). The presence of the aldehyde functional group drastically changes the reactivity of the precursor in wine-like systems. Recent work by this group has shown that this compound can exist as tautomers in solution, suggesting possible new reaction pathways for the metabolism of glut-3SH-al. Additionally, the bisulfite adduct of glut-3SH-al (glut-3SH-SO3) has been identified in wine samples.[5,6] The interconversion of glut-3SH-al and glut-3SH-SO3 is of great interest as this equilibrium will be influenced by the concentrations of both glut-3SH-al and free SO2 in the sample. As such, it is thought that glut-3SH-SO3 may exist in finished wines as a potential reservoir for the release of 3SH which could extend the life of the fruity characters which are so desirable in young white wines.[6]

A method for the extraction and quantification of glut-3SH-al and glut-3SH-SO3 has been developed, using previously synthesised deuterated analogues of these compounds to ensure reliable quantification.[7] The compounds are separated using solid phase extraction (SPE), followed by oxime derivatisation and MRM analysis on an LC-QqQ. This method has been validated using standard addition of synthetic glut-3SH-al and was found to be linear up to 1000 ppb.

Using this method, we have analysed the glut-3SH-al and glut-3SH-SO3 content of laboratory scale synthetic grape media samples before, during, and after fermentation, as well as a selection of commercial wines and grape juices. With the SPE and LC-QqQ analysis described here, the glut-3SH-al and glut-3SH-SO3 content of a wide range of grape derived samples can be measured, a valuable piece of the puzzle in elucidating 3SH biogenesis.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jennifer Muhl

School of Chemical Sciences, The University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, The University of Auckland  Bruno FEDRIZZI, School of Chemical Sciences, The University of Auckland  Rebecca DEED, School of Chemical Sciences, School of Biological Sciences, The University of Auckland

Contact the author

Keywords

3-sulfanylhexan-1-ol, Aroma Precursors, Analytical Method, Isotopic Labelling, LC-MS/MS

Citation

Related articles…

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Phenolic compounds present in natural haze protein of Sauvignon white wine

The aim of this work was the identification and quantification of polyphenols present in natural precipitate of a Sauvignon wine. Phenol analysis in wine precipitate was based on acid hydrolysis, CG- MS after derivatization, and LC-MS.