Macrowine 2021
IVES 9 IVES Conference Series 9 First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

Abstract

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3] Although only trace levels of 3SH are needed to impart perceptible aroma characters of passionfruit and grapefruit, the biogenesis of this compound during fermentation is not yet fully understood.[1,4] The polyfunctional varietal thiols can be produced during fermentation by metabolism of non-volatile precursors such as glutathione and cysteine conjugates of 3SH, however the routes by which these precursors are metabolised are complex, and not fully elucidated.[4]

One precursor of particular interest is the glutathione conjugate to the aldehyde form of 3SH, 3S-glutathionylhexanal (glut-3SH-al). The presence of the aldehyde functional group drastically changes the reactivity of the precursor in wine-like systems. Recent work by this group has shown that this compound can exist as tautomers in solution, suggesting possible new reaction pathways for the metabolism of glut-3SH-al. Additionally, the bisulfite adduct of glut-3SH-al (glut-3SH-SO3) has been identified in wine samples.[5,6] The interconversion of glut-3SH-al and glut-3SH-SO3 is of great interest as this equilibrium will be influenced by the concentrations of both glut-3SH-al and free SO2 in the sample. As such, it is thought that glut-3SH-SO3 may exist in finished wines as a potential reservoir for the release of 3SH which could extend the life of the fruity characters which are so desirable in young white wines.[6]

A method for the extraction and quantification of glut-3SH-al and glut-3SH-SO3 has been developed, using previously synthesised deuterated analogues of these compounds to ensure reliable quantification.[7] The compounds are separated using solid phase extraction (SPE), followed by oxime derivatisation and MRM analysis on an LC-QqQ. This method has been validated using standard addition of synthetic glut-3SH-al and was found to be linear up to 1000 ppb.

Using this method, we have analysed the glut-3SH-al and glut-3SH-SO3 content of laboratory scale synthetic grape media samples before, during, and after fermentation, as well as a selection of commercial wines and grape juices. With the SPE and LC-QqQ analysis described here, the glut-3SH-al and glut-3SH-SO3 content of a wide range of grape derived samples can be measured, a valuable piece of the puzzle in elucidating 3SH biogenesis.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jennifer Muhl

School of Chemical Sciences, The University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, The University of Auckland  Bruno FEDRIZZI, School of Chemical Sciences, The University of Auckland  Rebecca DEED, School of Chemical Sciences, School of Biological Sciences, The University of Auckland

Contact the author

Keywords

3-sulfanylhexan-1-ol, Aroma Precursors, Analytical Method, Isotopic Labelling, LC-MS/MS

Citation

Related articles…

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.

Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Caratterizzazione vitivinicola delle “Terre del Piacenziano” ricomprese nella zona D.O.C. “colli piacentini” attraverso l’analisi sensoriale dei vini prodotti

I territori della Riserva Geologica del Piacenziano sono parte del pedeappennino piacentino e sono noti per essere la culla del Pliocene, quel periodo di storia della Terra compreso tra 5.3 e 1.8 milioni di anni fa. Gli strati argillosi e sabbiosi riccamente fossiliferi qui presenti sono da sempre oggetto di studi geo-paleontologici tant’è che il Pliocene medio (3.6-2.6 milioni di anni fa) è internazionalmente noto come Piacenziano. Le analisi sensoriali strutturate dei vini qui prodotti hanno evidenziato, soprattutto per il vino Monterosso, le positive peculiarità dei loro caratteri sensoriali e descritto gli scostamenti significativi del loro profilo sensoriale rispetto agli altri vini presi a riferimento.

Review of the delimited zone of the AOC Saint-Joseph

L’appellation d’origine contrôlée repose sur une définition précise de l’aire de production du raisin. Cette délimitation définie par l’Institut National des Appellations d’Origine est proposée par des experts choisis pour leurs compétences dans le domaine de la connaissance de la relation terroir – vins, après avis du syndicat de défense de chaque AOC.