Macrowine 2021
IVES 9 IVES Conference Series 9 First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

Abstract

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3] Although only trace levels of 3SH are needed to impart perceptible aroma characters of passionfruit and grapefruit, the biogenesis of this compound during fermentation is not yet fully understood.[1,4] The polyfunctional varietal thiols can be produced during fermentation by metabolism of non-volatile precursors such as glutathione and cysteine conjugates of 3SH, however the routes by which these precursors are metabolised are complex, and not fully elucidated.[4]

One precursor of particular interest is the glutathione conjugate to the aldehyde form of 3SH, 3S-glutathionylhexanal (glut-3SH-al). The presence of the aldehyde functional group drastically changes the reactivity of the precursor in wine-like systems. Recent work by this group has shown that this compound can exist as tautomers in solution, suggesting possible new reaction pathways for the metabolism of glut-3SH-al. Additionally, the bisulfite adduct of glut-3SH-al (glut-3SH-SO3) has been identified in wine samples.[5,6] The interconversion of glut-3SH-al and glut-3SH-SO3 is of great interest as this equilibrium will be influenced by the concentrations of both glut-3SH-al and free SO2 in the sample. As such, it is thought that glut-3SH-SO3 may exist in finished wines as a potential reservoir for the release of 3SH which could extend the life of the fruity characters which are so desirable in young white wines.[6]

A method for the extraction and quantification of glut-3SH-al and glut-3SH-SO3 has been developed, using previously synthesised deuterated analogues of these compounds to ensure reliable quantification.[7] The compounds are separated using solid phase extraction (SPE), followed by oxime derivatisation and MRM analysis on an LC-QqQ. This method has been validated using standard addition of synthetic glut-3SH-al and was found to be linear up to 1000 ppb.

Using this method, we have analysed the glut-3SH-al and glut-3SH-SO3 content of laboratory scale synthetic grape media samples before, during, and after fermentation, as well as a selection of commercial wines and grape juices. With the SPE and LC-QqQ analysis described here, the glut-3SH-al and glut-3SH-SO3 content of a wide range of grape derived samples can be measured, a valuable piece of the puzzle in elucidating 3SH biogenesis.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jennifer Muhl

School of Chemical Sciences, The University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, The University of Auckland  Bruno FEDRIZZI, School of Chemical Sciences, The University of Auckland  Rebecca DEED, School of Chemical Sciences, School of Biological Sciences, The University of Auckland

Contact the author

Keywords

3-sulfanylhexan-1-ol, Aroma Precursors, Analytical Method, Isotopic Labelling, LC-MS/MS

Citation

Related articles…

Exploring the inhibitor effect of different commercial chitosan-based preparations on malolactic fermentation in rosé wine

Chitosan is a natural polymer of β-D-linked N-acetyl-D-glucosamine units (1,2), that has only recently been approved by OIV for its use in winemaking to help with microbial control, metal chelation, clarification, and reducing contaminants.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

In the current viticultural context, global warming leads to advanced and possibly accelerated ripening which can alter the balance among desirable grape quality traits sought for winemaking. Evaluation of genetic material that displays delayed and/or slower ripening could uncover a potential “slow ripening” trait for incorporation into commercial varieties through breeding. In this study, we evaluated a white-fruited selection discovered in the Grape Breeding and Genetics program at E. & J. Gallo Winery that displayed an unusual ripening pattern compared to standard varieties. Vines of the slow-ripening selection did not differ in their visual appearance, water status or gas exchange characteristics compared to vines of its normal-ripening sibling.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.