Macrowine 2021
IVES 9 IVES Conference Series 9 First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

Abstract

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3] Although only trace levels of 3SH are needed to impart perceptible aroma characters of passionfruit and grapefruit, the biogenesis of this compound during fermentation is not yet fully understood.[1,4] The polyfunctional varietal thiols can be produced during fermentation by metabolism of non-volatile precursors such as glutathione and cysteine conjugates of 3SH, however the routes by which these precursors are metabolised are complex, and not fully elucidated.[4]

One precursor of particular interest is the glutathione conjugate to the aldehyde form of 3SH, 3S-glutathionylhexanal (glut-3SH-al). The presence of the aldehyde functional group drastically changes the reactivity of the precursor in wine-like systems. Recent work by this group has shown that this compound can exist as tautomers in solution, suggesting possible new reaction pathways for the metabolism of glut-3SH-al. Additionally, the bisulfite adduct of glut-3SH-al (glut-3SH-SO3) has been identified in wine samples.[5,6] The interconversion of glut-3SH-al and glut-3SH-SO3 is of great interest as this equilibrium will be influenced by the concentrations of both glut-3SH-al and free SO2 in the sample. As such, it is thought that glut-3SH-SO3 may exist in finished wines as a potential reservoir for the release of 3SH which could extend the life of the fruity characters which are so desirable in young white wines.[6]

A method for the extraction and quantification of glut-3SH-al and glut-3SH-SO3 has been developed, using previously synthesised deuterated analogues of these compounds to ensure reliable quantification.[7] The compounds are separated using solid phase extraction (SPE), followed by oxime derivatisation and MRM analysis on an LC-QqQ. This method has been validated using standard addition of synthetic glut-3SH-al and was found to be linear up to 1000 ppb.

Using this method, we have analysed the glut-3SH-al and glut-3SH-SO3 content of laboratory scale synthetic grape media samples before, during, and after fermentation, as well as a selection of commercial wines and grape juices. With the SPE and LC-QqQ analysis described here, the glut-3SH-al and glut-3SH-SO3 content of a wide range of grape derived samples can be measured, a valuable piece of the puzzle in elucidating 3SH biogenesis.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jennifer Muhl

School of Chemical Sciences, The University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, The University of Auckland  Bruno FEDRIZZI, School of Chemical Sciences, The University of Auckland  Rebecca DEED, School of Chemical Sciences, School of Biological Sciences, The University of Auckland

Contact the author

Keywords

3-sulfanylhexan-1-ol, Aroma Precursors, Analytical Method, Isotopic Labelling, LC-MS/MS

Citation

Related articles…

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière.

Geochemistry of Vrbničko Polje (Croatia) winegrowing site

A multi-element pedo-geochemical survey was carried out in Vrbničko polje vineyards on the Krk Island, Croatia. This Mediterranean winegrowing site is famous by Žlahtina wine production.

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.