Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

Abstract

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production. Typicality can be defined as a set of properties, described by an intrinsic and perceived quality. Intrinsic quality is the resultant of an eligibility profile, whose parameters are common to all wines (e.g., the sensory attributes and chemical compounds related to acidity, astringency, persistence, alcohol, viscosity, etc.); an identity profile, whose parameters are related to the grape variety and the terroir (aroma and volatile profiles); a style profile related to the brand, expression of the winemaking related choices.

METHODS: Fourteen commercial Chianti DOCG wines from 2016 harvest were selected based on their production management including organic, biodynamic and conventional. A survey was set up in order to get vineyard and winemaking information from the different estates producing the wines object of the present study. This information was converted in terms of estimated carbon dioxide production, on the basis of existing literature data about Life Cycle Analysis (LCA). Phenolic and volatile compositions, color indices and standard chemical parameters were determined on wines.Quantitative Descriptive Analysis was applied to define the eligibility, identity, and style properties (the intrinsic quality), while a group of 45 experts evaluated the differences between wines by Napping test and rated their typicality (perceived quality). For the evaluation of the chemical and sensory differences between wines, three global different models were created (conventional, organic and biodynamic) using a Soft Modelling of Class Analogy (SIMCA).

RESULTS: As regard the results of the survey, the organic and biodynamic managements showed the lower level of estimated values of carbon dioxide production. The statistical elaboration of the chemical and sensory data underlined that the different wine estate managements did not yield any systematic differences on the intrinsic and perceived quality, despite there were detected significant differences between wines. Moreover different levels of quality were evidenced inside every kind of management. In particular, the SIMCA model built on the chemical and sensory profiles highlighted that the conventional wine models presented the less variability, as opposed to the biodynamic model that resulted the more variable in terms of intrinsic and perceived quality.

CONCLUSIONS

The environmentally friendly production processes, such as organic and biodynamic production, with a low environmental impact, may not have necessarily an effect on the identity and thus on the typicality of wine. The process control represents the critical point for all the three kind of

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Monica Picchi

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina MILLARINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Paola DOMIZIO, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

sangiovese; biodynamic wine; organic wine; quality; typicality; carbon footprint

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

Contribution of grape seeds to evolution of acetaldehyde, pigments and tannins reactive towards salivary proteins of red wine over time

This study investigated the impact of the gsk/gse ratio on the evolution of acetaldehyde and of major phenolic compounds of aglianico wine in wine like solution and real wine. Four model solutions and the correspondant control wines were prepared. The natural weight ratio between grape skins and seeds was determined on the real grapes, and a control wine was obtained from those.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.