Macrowine 2021
IVES 9 IVES Conference Series 9 Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Abstract

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998). During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition (Mannazzu et al., 2008). Musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations (Casalta et al., 2013). Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in the absence of oxygen (Nes, 1987). Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol nature on fermentation kinetics parameters. Moreover, studies done until today analyzed a limited number of yeasts strains. For this reason, the aim of this work is to compare the fermentation performances of 27 Saccharomyces cerevisiae strains with phytosterols and ergosterol on two conditions: sterol stress (sterol starvation) and osmotic stress (the most common stress during fermentation due to high concentrations of sugars).Experiments were performed in 300 mL fermenters without oxygen. Fermentation kinetics were monitored continuously through CO2 production in order to obtain parameters, such as the maximum fermentation rate (Vmax) or total CO2 production. Cell count and cell viability were measured around 80% of fermentation progress. Central carbon metabolism (CCM) metabolites (acetate, glycerol, succinate and residual sugars) were quantified at the end of fermentation.Principal Component Analysis with biological, kinetic and CCM variables revealed the huge phenotype diversity of strains in this study. Analysis of variance (ANOVA) indicated that both the strain and the nature of sterol explained the differences on yeast performances in fermentation. It should be noted that cellular viability is a key parameter in both sterol and osmotic stress. Indeed, strains with a high viability at the end of the fermentation finished fermenting earlier. Finally, ergosterol allowed a better completion of fermentation in both stress conditions tested.These results highlighted the role of sterols in wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Interestingly, sterol nature affected yeast viability, biomass, kinetics parameters and biosynthesis of CCM metabolites

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovana Girardi Piva 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Jean-Roch MOURET (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France)  Virginie GALEOTE (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Jean-Luc LEGRAS (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Erick CASALTA (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Anne ORTIZ-JULIEN (Lallemand SAS, Blagnac, France)

Contact the author

Keywords

wine yeast, sterol starvation, osmotic stress, yeast membrane, alcoholic fermentation

Citation

Related articles…

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines

The effects of antioxidants and gas sparging on New Zealand white wines

This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Effects of water deficit on secondary metabolites in grapes and wines

In this video recording of the IVES science meeting 2021, Simone D. Castellarin (University of British Columbia, Wine Research Center, Wine Research Centre, Vancouver, Canada) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.