Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

Abstract

Grape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied. For this reason, the aim of this work was to evaluate the influence of “Zulla” cover crop on the volatile profiles of organically grown Shyraz variety grapes. For this purpose, volatile profiles of grapes obtained from vines with three different amount of cover crop (one line, two lines and four lines) and without cover crop, over two harvests (2019 and 2020) were determined. The grape samples came from Jerez a warm climate zone. Must volatile compounds were determined by sequential sorptive extraction with Twisters by immersion (SBSE) and headspace (HSSE), followed by GC-MS analysis [1]. A total of 159 compounds were determined and, most of them were influenced by the presence of cover crop. The amount of methyl ester was directly correlated with the amount of “Zulla” cover crop. The results of principal component analysis (PCA) showed that PC1 grouped the samples according harvest and PC2 according to amount of cover crop, separating clearly the samples obtained without cover crop, in both harvests. It was observed a reduction of free volatile compounds when the amount of cover crop applied increased, in both harvests. Then, cover crop had an effect over volatile profile of Shyraz grapes.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Eva Valero

Nutrition and Bromatology Area, Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain.,F. Arranz, Nutrition and Bromatology Area, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Seville, Seville. Spain. B. Puertas, Agricultural and Fisheries Research and Training Institute (IFAPA), Rancho de la Merced. 11407, Jerez de la Fra. Spain. M.L. Morales, Nutrition and Bromatology Area, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Seville, Seville. Spain

Contact the author

Keywords

zulla cover crop, free volatile compounds, ecological crop

Citation

Related articles…

El medio natural de Chile como factor de adaptación de la vid

Chile, junto con Australia, EE.UU., Sudáfrica, Argentina y Nueva Zelanda constituye el grupo de países del nuevo mundo vitivinícola. Todos ellos en conjunto han experimentado en la última década

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.