Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

Abstract

Grape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied. For this reason, the aim of this work was to evaluate the influence of “Zulla” cover crop on the volatile profiles of organically grown Shyraz variety grapes. For this purpose, volatile profiles of grapes obtained from vines with three different amount of cover crop (one line, two lines and four lines) and without cover crop, over two harvests (2019 and 2020) were determined. The grape samples came from Jerez a warm climate zone. Must volatile compounds were determined by sequential sorptive extraction with Twisters by immersion (SBSE) and headspace (HSSE), followed by GC-MS analysis [1]. A total of 159 compounds were determined and, most of them were influenced by the presence of cover crop. The amount of methyl ester was directly correlated with the amount of “Zulla” cover crop. The results of principal component analysis (PCA) showed that PC1 grouped the samples according harvest and PC2 according to amount of cover crop, separating clearly the samples obtained without cover crop, in both harvests. It was observed a reduction of free volatile compounds when the amount of cover crop applied increased, in both harvests. Then, cover crop had an effect over volatile profile of Shyraz grapes.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Eva Valero

Nutrition and Bromatology Area, Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain.,F. Arranz, Nutrition and Bromatology Area, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Seville, Seville. Spain. B. Puertas, Agricultural and Fisheries Research and Training Institute (IFAPA), Rancho de la Merced. 11407, Jerez de la Fra. Spain. M.L. Morales, Nutrition and Bromatology Area, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Seville, Seville. Spain

Contact the author

Keywords

zulla cover crop, free volatile compounds, ecological crop

Citation

Related articles…

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change.

On the meaning of looking for terroir perceptions in blind tastings

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists

Characteristics of ecological production of grape and wine in Prizren’s vineyard territory in Yugoslavia

Prizren’s vineyard territory-y assigned for ecological production of grapes and wine includes 1. 200 hectares of vineyard located in five separate localities which belongs to the P KB “Kosovo vina”, Mala Krusa in Prizren. Division of vineyard territory in zones was carried out in 1974. Pertaining to the vineyards, the climate and soil conditions have been studied and determined as well as topographie establishing of vineyard boundaries.

Enhancing sustainability in viticulture through digital technologies: A case study from Smyrnakis winery

The integration of digital technologies in vineyard management offers substantial opportunities for enhancing sustainability, efficiency, and grape quality.

Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Botrytis cinerea (Bc) is one of the main pathogens affecting the cultivated grapevine. A key role in grapevine tissue colonization is played by cell wall (CW) remodeling driven by CW Modifying Enzymes (CWMEs), expressed both by the host and the pathogen. Their action can impact CW integrity and trigger specific immune signaling, thus influencing Bc infection outcome. To further characterize the role of the CW in the grapevine response to Bc, two contrasting genotypes in their resistance to the fungus were artificially inoculated at full bloom. RNA-seq analysis and biochemical characterization of the CW and its modification in samples collected at 24 hours post-inoculation highlighted significant differences between genotypes.