Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

Abstract

Grape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied. For this reason, the aim of this work was to evaluate the influence of “Zulla” cover crop on the volatile profiles of organically grown Shyraz variety grapes. For this purpose, volatile profiles of grapes obtained from vines with three different amount of cover crop (one line, two lines and four lines) and without cover crop, over two harvests (2019 and 2020) were determined. The grape samples came from Jerez a warm climate zone. Must volatile compounds were determined by sequential sorptive extraction with Twisters by immersion (SBSE) and headspace (HSSE), followed by GC-MS analysis [1]. A total of 159 compounds were determined and, most of them were influenced by the presence of cover crop. The amount of methyl ester was directly correlated with the amount of “Zulla” cover crop. The results of principal component analysis (PCA) showed that PC1 grouped the samples according harvest and PC2 according to amount of cover crop, separating clearly the samples obtained without cover crop, in both harvests. It was observed a reduction of free volatile compounds when the amount of cover crop applied increased, in both harvests. Then, cover crop had an effect over volatile profile of Shyraz grapes.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Eva Valero

Nutrition and Bromatology Area, Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain.,F. Arranz, Nutrition and Bromatology Area, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Seville, Seville. Spain. B. Puertas, Agricultural and Fisheries Research and Training Institute (IFAPA), Rancho de la Merced. 11407, Jerez de la Fra. Spain. M.L. Morales, Nutrition and Bromatology Area, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Seville, Seville. Spain

Contact the author

Keywords

zulla cover crop, free volatile compounds, ecological crop

Citation

Related articles…

Advancement of grape maturity – comparison between contrasting varieties and regions

Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier
vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016).

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.

Caractérisation des terroirs viticoles champenois

The Champagne vineyard extends over 35,300 ha under the Appellation d’Origine Contrôlée, of which 30,000 are in production. It mainly covers 3 departments: in order of importance, Marne (68% of the appellation area), Aube (22%) and Aisne (10%), and more anecdotally Haute Marne and Seine and Mame. It is a young vineyard (for more than half of the surface, the winegrowers have the experience of only one generation of vines), and fragmented (more than half of the exploitations extend over less than 1 ha; the average size of a cadastral parcel is 12 ares).

Enhancing sustainability in winemaking: the role of PIWI in South Tyrol

The adoption of PIWI (Pilzwiderstandsfähige) grape cultivars, bred for resistance to fungal diseases, is a transformative step towards sustainable winemaking.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).