Macrowine 2021
IVES 9 IVES Conference Series 9 Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Abstract

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2]. In this study, a biosurfactant has been evaluated during red winemaking for its effect on fermentation dynamics, phenolic compounds extraction, and colour stabilization.

METHODS: The biosurfactant used was obtained from a fermented residual stream of corn-milling industry, named corn steep liquor (CSL). The harvested mass from Merlot winegrapes was distributed in 12 fermentation flaks with the same proportion of grape juice and solid parts. Six of them were added with CSL biosurfactant (1 g/L) whereas the other six were not added (control). Two fermentation protocols were assessed (spontaneous and Saccharomyces cerevisiae inoculated). Fermentation dynamics and kinetics, standard chemical parameters, colour characteristics, and phenolic composition were determined during maceration and at the end of malolactic fermentation.

RESULTS: During inoculated maceration, the biosurfactant-added samples showed significantly higher values of total polyphenols and colour intensity when compared to control, and lower ones of the three colour CIEL*a*b* coordinates (lightness, red/green, and yellow/blue). At the end of alcoholic fermentation, a higher percentage of more stable polymerized pigments was also observed. The final wine resulted to be richer in total polyphenols and anthocyanins, as well as in high molecular weight flavanols for the biosurfactant-added samples.

CONCLUSIONS

The biosurfactant addition did not affect negatively on inoculated fermentation dynamics and influenced positively the colour stability after malolactic fermentation resulting in darker and bluish wines. No significant changes on colour properties and related compounds were observed when spontaneous fermentation was performed.

ACKNOWLEDGMENTS

This study was supported by the Spanish Ministry of Economy and Competitiveness (MINECO project RTI2018-093610-B-100)

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susana Río Segade

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Vasileios ENGLEZOS, University of Torino, Italy Alejandro LÓPEZ-PRIETO, University of Vigo, Spain Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Kalliopi RANTSIOU, University of Torino, Italy Luca ROLLE, University of Torino, Italy Benita PÉREZ CID, University of Vigo, Spain Ana Belén MOLDES, University of Vigo, Spain Jose Manuel CRUZ, University of Vigo, Spain

Contact the author

Keywords

red grapes; winemaking; biosurfactant; fermentation dynamics; colour characteristics; phenolic compounds; polymeric pigments

Citation

Related articles…

Intra-block variations of vine water status in time and space

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot.

“Terroir” and climate change in Franconia / Germany

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment).

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.