Macrowine 2021
IVES 9 IVES Conference Series 9 Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Abstract

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2]. In this study, a biosurfactant has been evaluated during red winemaking for its effect on fermentation dynamics, phenolic compounds extraction, and colour stabilization.

METHODS: The biosurfactant used was obtained from a fermented residual stream of corn-milling industry, named corn steep liquor (CSL). The harvested mass from Merlot winegrapes was distributed in 12 fermentation flaks with the same proportion of grape juice and solid parts. Six of them were added with CSL biosurfactant (1 g/L) whereas the other six were not added (control). Two fermentation protocols were assessed (spontaneous and Saccharomyces cerevisiae inoculated). Fermentation dynamics and kinetics, standard chemical parameters, colour characteristics, and phenolic composition were determined during maceration and at the end of malolactic fermentation.

RESULTS: During inoculated maceration, the biosurfactant-added samples showed significantly higher values of total polyphenols and colour intensity when compared to control, and lower ones of the three colour CIEL*a*b* coordinates (lightness, red/green, and yellow/blue). At the end of alcoholic fermentation, a higher percentage of more stable polymerized pigments was also observed. The final wine resulted to be richer in total polyphenols and anthocyanins, as well as in high molecular weight flavanols for the biosurfactant-added samples.

CONCLUSIONS

The biosurfactant addition did not affect negatively on inoculated fermentation dynamics and influenced positively the colour stability after malolactic fermentation resulting in darker and bluish wines. No significant changes on colour properties and related compounds were observed when spontaneous fermentation was performed.

ACKNOWLEDGMENTS

This study was supported by the Spanish Ministry of Economy and Competitiveness (MINECO project RTI2018-093610-B-100)

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susana Río Segade

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Vasileios ENGLEZOS, University of Torino, Italy Alejandro LÓPEZ-PRIETO, University of Vigo, Spain Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Kalliopi RANTSIOU, University of Torino, Italy Luca ROLLE, University of Torino, Italy Benita PÉREZ CID, University of Vigo, Spain Ana Belén MOLDES, University of Vigo, Spain Jose Manuel CRUZ, University of Vigo, Spain

Contact the author

Keywords

red grapes; winemaking; biosurfactant; fermentation dynamics; colour characteristics; phenolic compounds; polymeric pigments

Citation

Related articles…

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions.

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.

Evaluation of viticultural suitability of Arezzo Province (Tuscany)

Dans une région comme la Toscane, zone dans laquelle sont produits certains des meilleurs vins italiens et du monde, la province d’Arezzo a actuellement une importance relativement marginale

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.