Macrowine 2021
IVES 9 IVES Conference Series 9 Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Abstract

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2]. In this study, a biosurfactant has been evaluated during red winemaking for its effect on fermentation dynamics, phenolic compounds extraction, and colour stabilization.

METHODS: The biosurfactant used was obtained from a fermented residual stream of corn-milling industry, named corn steep liquor (CSL). The harvested mass from Merlot winegrapes was distributed in 12 fermentation flaks with the same proportion of grape juice and solid parts. Six of them were added with CSL biosurfactant (1 g/L) whereas the other six were not added (control). Two fermentation protocols were assessed (spontaneous and Saccharomyces cerevisiae inoculated). Fermentation dynamics and kinetics, standard chemical parameters, colour characteristics, and phenolic composition were determined during maceration and at the end of malolactic fermentation.

RESULTS: During inoculated maceration, the biosurfactant-added samples showed significantly higher values of total polyphenols and colour intensity when compared to control, and lower ones of the three colour CIEL*a*b* coordinates (lightness, red/green, and yellow/blue). At the end of alcoholic fermentation, a higher percentage of more stable polymerized pigments was also observed. The final wine resulted to be richer in total polyphenols and anthocyanins, as well as in high molecular weight flavanols for the biosurfactant-added samples.

CONCLUSIONS

The biosurfactant addition did not affect negatively on inoculated fermentation dynamics and influenced positively the colour stability after malolactic fermentation resulting in darker and bluish wines. No significant changes on colour properties and related compounds were observed when spontaneous fermentation was performed.

ACKNOWLEDGMENTS

This study was supported by the Spanish Ministry of Economy and Competitiveness (MINECO project RTI2018-093610-B-100)

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susana Río Segade

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Vasileios ENGLEZOS, University of Torino, Italy Alejandro LÓPEZ-PRIETO, University of Vigo, Spain Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Kalliopi RANTSIOU, University of Torino, Italy Luca ROLLE, University of Torino, Italy Benita PÉREZ CID, University of Vigo, Spain Ana Belén MOLDES, University of Vigo, Spain Jose Manuel CRUZ, University of Vigo, Spain

Contact the author

Keywords

red grapes; winemaking; biosurfactant; fermentation dynamics; colour characteristics; phenolic compounds; polymeric pigments

Citation

Related articles…

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Riesling as a model to irrigate white wine grape varieties in arid climates

Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model.

Impact of high temperatures on phenolic profile of Babić grapes

Babić is a Croatian native grapevine variety grown in the Coastal region, mainly in the Šibenik and Primošten areas, famous for high quality red wines. The region is known for its warm Mediterranean climate and karst relief. Vineyards are found on the hillsides of varying slopes and exposition usually giving low yields of exceptional quality.

Climate influence on the grapevine phenology and anthocyanins content in wines from the Skopje vineyard area, Republic of Macedonia

The phenological stages and the content of the anthocyanins of non-irrigated cultivars Blatina, Vranec, Kratoshija, Prokupec and Stanushina were study

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.