Macrowine 2021
IVES 9 IVES Conference Series 9 Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Abstract

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2]. In this study, a biosurfactant has been evaluated during red winemaking for its effect on fermentation dynamics, phenolic compounds extraction, and colour stabilization.

METHODS: The biosurfactant used was obtained from a fermented residual stream of corn-milling industry, named corn steep liquor (CSL). The harvested mass from Merlot winegrapes was distributed in 12 fermentation flaks with the same proportion of grape juice and solid parts. Six of them were added with CSL biosurfactant (1 g/L) whereas the other six were not added (control). Two fermentation protocols were assessed (spontaneous and Saccharomyces cerevisiae inoculated). Fermentation dynamics and kinetics, standard chemical parameters, colour characteristics, and phenolic composition were determined during maceration and at the end of malolactic fermentation.

RESULTS: During inoculated maceration, the biosurfactant-added samples showed significantly higher values of total polyphenols and colour intensity when compared to control, and lower ones of the three colour CIEL*a*b* coordinates (lightness, red/green, and yellow/blue). At the end of alcoholic fermentation, a higher percentage of more stable polymerized pigments was also observed. The final wine resulted to be richer in total polyphenols and anthocyanins, as well as in high molecular weight flavanols for the biosurfactant-added samples.

CONCLUSIONS

The biosurfactant addition did not affect negatively on inoculated fermentation dynamics and influenced positively the colour stability after malolactic fermentation resulting in darker and bluish wines. No significant changes on colour properties and related compounds were observed when spontaneous fermentation was performed.

ACKNOWLEDGMENTS

This study was supported by the Spanish Ministry of Economy and Competitiveness (MINECO project RTI2018-093610-B-100)

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susana Río Segade

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Vasileios ENGLEZOS, University of Torino, Italy Alejandro LÓPEZ-PRIETO, University of Vigo, Spain Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Kalliopi RANTSIOU, University of Torino, Italy Luca ROLLE, University of Torino, Italy Benita PÉREZ CID, University of Vigo, Spain Ana Belén MOLDES, University of Vigo, Spain Jose Manuel CRUZ, University of Vigo, Spain

Contact the author

Keywords

red grapes; winemaking; biosurfactant; fermentation dynamics; colour characteristics; phenolic compounds; polymeric pigments

Citation

Related articles…

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.