Macrowine 2021
IVES 9 IVES Conference Series 9 Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

Abstract

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2]. In this study, a biosurfactant has been evaluated during red winemaking for its effect on fermentation dynamics, phenolic compounds extraction, and colour stabilization.

METHODS: The biosurfactant used was obtained from a fermented residual stream of corn-milling industry, named corn steep liquor (CSL). The harvested mass from Merlot winegrapes was distributed in 12 fermentation flaks with the same proportion of grape juice and solid parts. Six of them were added with CSL biosurfactant (1 g/L) whereas the other six were not added (control). Two fermentation protocols were assessed (spontaneous and Saccharomyces cerevisiae inoculated). Fermentation dynamics and kinetics, standard chemical parameters, colour characteristics, and phenolic composition were determined during maceration and at the end of malolactic fermentation.

RESULTS: During inoculated maceration, the biosurfactant-added samples showed significantly higher values of total polyphenols and colour intensity when compared to control, and lower ones of the three colour CIEL*a*b* coordinates (lightness, red/green, and yellow/blue). At the end of alcoholic fermentation, a higher percentage of more stable polymerized pigments was also observed. The final wine resulted to be richer in total polyphenols and anthocyanins, as well as in high molecular weight flavanols for the biosurfactant-added samples.

CONCLUSIONS

The biosurfactant addition did not affect negatively on inoculated fermentation dynamics and influenced positively the colour stability after malolactic fermentation resulting in darker and bluish wines. No significant changes on colour properties and related compounds were observed when spontaneous fermentation was performed.

ACKNOWLEDGMENTS

This study was supported by the Spanish Ministry of Economy and Competitiveness (MINECO project RTI2018-093610-B-100)

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Susana Río Segade

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Vasileios ENGLEZOS, University of Torino, Italy Alejandro LÓPEZ-PRIETO, University of Vigo, Spain Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Kalliopi RANTSIOU, University of Torino, Italy Luca ROLLE, University of Torino, Italy Benita PÉREZ CID, University of Vigo, Spain Ana Belén MOLDES, University of Vigo, Spain Jose Manuel CRUZ, University of Vigo, Spain

Contact the author

Keywords

red grapes; winemaking; biosurfactant; fermentation dynamics; colour characteristics; phenolic compounds; polymeric pigments

Citation

Related articles…

The relationship of wine store customers with the areas of production, considering provenance and tourism

This work aims at identifying the most appropriate marketing strategies to inform consumers of the global market about the added value of the wines of Friuli Venezia Giulia.

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues.