Macrowine 2021
IVES 9 IVES Conference Series 9 Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

Abstract

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations.

METHODS: The A-TEEM technique (Gilmore, Akaji, & Csatorday, 2017) has been applied to analyse experimental Shiraz wines (n = 186) from six subregions of Barossa Valley, South Australia, from 2018, 2019 and 2020 vintages. Absorbance spectra and EEM fingerprints of the wines were recorded and the data were fused for multivariate statistical modelling with extreme gradient boost discriminant analysis (XGBDA) as reported by Ranaweera, Gilmore, Capone, Bastian, and Jeffery (2021) to classify wine according to their subregions. The cross-validated (k =10, Venetian blinds) confusion matrix score probabilities of classes were used to assess the accuracy of the classification models. A similar procedure was also carried out to discriminate subregions for a single vintage year. Basic chemical parameters (alcohol %v/v, pH, titratable acidity, and volatile acidity) were modelled with the partial least squares regression (PLSR) using A-TEEM data and reference chemical data.

RESULTS: Results have shown an unprecedented 100% correct classification of wines according to subregion across the three vintages and 98% accuracy for subregion in a single vintage year. Other model performance parameters of confusion matrix, including sensitivity, specificity, precision, and F1 score, were also showing the highest values (1.0) for each of the subregions. PLSR modelling revealed that A-TEEM data can also be used for a rapid assessment of basic wine chemical parameters. Notably, the results confirmed a distinct resolution among subregions despite their relatively close proximity within a single GI, indicating the effect of terroir on intraregional variation.

CONCLUSIONS

The sensitivity of A-TEEM allied with multivariate statistical analysis of fluorescence data facilitated the accurate classification of Shiraz wines according to the subregion of origin and production year. As a robust analytical method, A-TEEM can help identify the drivers of regional expression of wine and can potentially be developed for use within the supply chain to guarantee the provenance indicated on the label and to provide an assurance of quality. Overall, A-TEEM with XGBDA modelling continues to be shown as an accurate wine authentication tool that could even be applied at a subregional level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ruchira Ranaweera

Department of Wine Science, The University of Adelaide, South Australia, Australia,Adam GILMORE, Horiba Instruments Inc., Piscataway, New Jersey, USA Dimitra CAPONE, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide Susan BASTIAN, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide David JEFFERY, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

geographical indication, authenticity, subregion, excitation-emission matrix, chemometrics, terroir

Citation

Related articles…

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.

A.O.C. huile d’olive de Nyons et olives noires de Nyons

A.O.C. huile d’olive de Nyons et olives noires de Nyons