Macrowine 2021
IVES 9 IVES Conference Series 9 Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

Abstract

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations.

METHODS: The A-TEEM technique (Gilmore, Akaji, & Csatorday, 2017) has been applied to analyse experimental Shiraz wines (n = 186) from six subregions of Barossa Valley, South Australia, from 2018, 2019 and 2020 vintages. Absorbance spectra and EEM fingerprints of the wines were recorded and the data were fused for multivariate statistical modelling with extreme gradient boost discriminant analysis (XGBDA) as reported by Ranaweera, Gilmore, Capone, Bastian, and Jeffery (2021) to classify wine according to their subregions. The cross-validated (k =10, Venetian blinds) confusion matrix score probabilities of classes were used to assess the accuracy of the classification models. A similar procedure was also carried out to discriminate subregions for a single vintage year. Basic chemical parameters (alcohol %v/v, pH, titratable acidity, and volatile acidity) were modelled with the partial least squares regression (PLSR) using A-TEEM data and reference chemical data.

RESULTS: Results have shown an unprecedented 100% correct classification of wines according to subregion across the three vintages and 98% accuracy for subregion in a single vintage year. Other model performance parameters of confusion matrix, including sensitivity, specificity, precision, and F1 score, were also showing the highest values (1.0) for each of the subregions. PLSR modelling revealed that A-TEEM data can also be used for a rapid assessment of basic wine chemical parameters. Notably, the results confirmed a distinct resolution among subregions despite their relatively close proximity within a single GI, indicating the effect of terroir on intraregional variation.

CONCLUSIONS

The sensitivity of A-TEEM allied with multivariate statistical analysis of fluorescence data facilitated the accurate classification of Shiraz wines according to the subregion of origin and production year. As a robust analytical method, A-TEEM can help identify the drivers of regional expression of wine and can potentially be developed for use within the supply chain to guarantee the provenance indicated on the label and to provide an assurance of quality. Overall, A-TEEM with XGBDA modelling continues to be shown as an accurate wine authentication tool that could even be applied at a subregional level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ruchira Ranaweera

Department of Wine Science, The University of Adelaide, South Australia, Australia,Adam GILMORE, Horiba Instruments Inc., Piscataway, New Jersey, USA Dimitra CAPONE, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide Susan BASTIAN, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide David JEFFERY, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

geographical indication, authenticity, subregion, excitation-emission matrix, chemometrics, terroir

Citation

Related articles…

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.