Macrowine 2021
IVES 9 IVES Conference Series 9 Proanthocyanin composition in new varieties from monastrell

Proanthocyanin composition in new varieties from monastrell

Abstract

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations. In an effort of increasing our understanding of crosses from Monastrell, it has been studied their proanthocyanidin composition during three seasons. Besides, it is important the idea of registering new varieties of red grapes from Monastrell adapted to the new climatic scenario produced in the South East of Spain, with an excellent polyphenolic capacity.

METHODS: A quantitative analysis was carried out during three seasons (2018, 2019 and 2020) in order to study and compare the obtained concentration of proanthocyanidins in Monastrell and the new varieties MC80 (Monastrell x Cabernet-Sauvignon), MC98, MS10 (Monastrell x Syrah), MC4 and MC18. The analysis was carried out in grapes as well as in the final of alcoholic fermentation in order to study its extraction capacity. The analyzes were performed and quantified following the fluoroglycinolysis method.

RESULTS: In general, the results showed higher concentrations in tannins in the most hybrids of Monastrell for the three seasons studied.Furthermore, a higher concentration of epigallocatechin was found in most of the hybrid wines elaborated, being positive from an organoleptic point of view, since this compound provides softness to the wines. However, MC4 is characterized by its low concentration of this compound although these values could be normal since the concentration of tannins in this variety is much lower with respect to the other hybrids. Another of the compounds of interest analyzed was epicatequinogalate, this compound was also found in higher concentrations in hybrids analysed than in Monastrell variety.Finally, It should be noted that the relationship between the average degree of polymerization of the tannins and the percentage of gallolation was much higher in the seeds than in the elaborated wines or in the skins.

CONCLUSIONS

These new varieties ensuring its incredible polyphenolic concentration showing a great potential as new varieties adapted to the dry and hot conditions produced in the south east of Spain

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

J.D, Moreno-Olivares 

Murcian Institute of Agricultural and Food Research and Development (IMIDA). C/ Mayor s/n 20150, La Alberca (Murcia).,M.J, Giménez-Bañón D.F, Paladines-Quezada J.C, Gómez-Martínez A, Cebrían-Pérez J.I, Fernández-Fernández J.A, Bleda-Sánchez R, Gil-Muñoz  Murcian Institute of Agricultural and Food Research and Development (IMIDA). C/ Mayor s/n 20150, La Alberca (Murcia).

Contact the author

Keywords

tannins, polyphenolic composition, Vitis vinifera, crosses, cromatography

Citation

Related articles…

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation