Macrowine 2021
IVES 9 IVES Conference Series 9 Aroma composition of mono-varietal white wines for the production of Custoza

Aroma composition of mono-varietal white wines for the production of Custoza

Abstract

AIM: The appellation “Bianco di Custoza” or “Custoza”, born in 1971, is one of the oldest white wines Protected Designation of Origin in Italy. The production area lies on the morainic hills located south-east of Lake Garda, in the province of Verona. The wines belonging to this appellation are obtained from grapes of main varieties, namely Cortese B., Garganega, Trebbiano Toscano and Tocai Friulano alone or jointly for a minimum of 70% (each one not exceeding a maximum of 45%). In addition, Malvasia, Riesling Italico and Renano, Pinot Bianco, Chardonnay and Incrocio Manzoni (cross between Riesling Renano and Pinot Bianco) varieties, alone or jointly, can contribute to the production for a maximum of 30%. According to the appellation regulation, the sensory profile of these wines should be characterized by fruity and floral notes, sometimes with hints of aromatic herbs and spices.

The purpose of this study was to evaluate the volatile profile of monovarietal wines used in the production of Custoza.

METHODS: Cortese B., Incrocio Manzoni, Trebbiano Toscano, Garganega and Tocai Friulano mono-varietal wines were produced by a local winery during the 2020 vintage. Wines were samples at the end of alcoholic fermentation. Free volatile compounds were analyzed using SPME-GC-MS techniques. All data were treated by analysis of variance (ANOVA) for statistical purposes.

RESULTS: Greater presence of trans-linalool oxide, alpha-terpineol, TDN, methyl salycilate and dimethyl sulfide (DMS) was observed in wines produced from grapes of the Cortese B. variety, one of the four varieties main. Monovarietal wines produced from Incrocio Manzoni grapes, one of the minor varieties, showed a greater content of cis-linalool oxide. In Trebbiano Toscano, a greater content of linalyl acetate and beta-damascenone was observed, while a greater presence of methanthiol was found in wines produced from the Tocai Friulano variety

CONCLUSIONS

This study provided a first insight in the potential contribution of the different varietal wines belonging to the Custoza appellation to the aroma composition of the final wines. For both main varieties (Tocai Friulano, Trebbiano Toscano and Cortese B.) and secondary varieties such as the Incontro Manzoni, differences in terpene, norisporeninds and sulfur compound content were observed. Further studies should investigate whether these differences should be attributed to specific varietal patterns and/or to viticultural and winemaking variables.

ACKNOWLEDGMENT

he present work was supported by Cantina di Custoza

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Beatrice Perina

University of Verona,Davide, SLAGHENAUFI, University of Verona Giovanni, LUZZINI, University of Verona Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

custoza, custoza varieties, white wine, aroma compounds

Citation

Related articles…

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.

Successful training on responsible wine consumption in Germany

Considering that „prevention requires information”, in 2007, the european education program wine in moderation (wim) started. The common message of responsible and only moderate wine consumption is implemented in each participating country, adapted to national circumstances. In germany, besides recruiting new wim members from the wine sector, the deutsche weinakademie focusses also on information and education of future wine makers and cellar men in professional schools. The seminars cover basic information about the existing legal framework (youth protecting law, drink driving laws, etc.), the self regulation code of conduct for commercial communications (advertising) of alcoholic beverages as well as the health effects of alcoholic beverages, and of wine in particular.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.