Macrowine 2021
IVES 9 IVES Conference Series 9 Aroma composition of mono-varietal white wines for the production of Custoza

Aroma composition of mono-varietal white wines for the production of Custoza

Abstract

AIM: The appellation “Bianco di Custoza” or “Custoza”, born in 1971, is one of the oldest white wines Protected Designation of Origin in Italy. The production area lies on the morainic hills located south-east of Lake Garda, in the province of Verona. The wines belonging to this appellation are obtained from grapes of main varieties, namely Cortese B., Garganega, Trebbiano Toscano and Tocai Friulano alone or jointly for a minimum of 70% (each one not exceeding a maximum of 45%). In addition, Malvasia, Riesling Italico and Renano, Pinot Bianco, Chardonnay and Incrocio Manzoni (cross between Riesling Renano and Pinot Bianco) varieties, alone or jointly, can contribute to the production for a maximum of 30%. According to the appellation regulation, the sensory profile of these wines should be characterized by fruity and floral notes, sometimes with hints of aromatic herbs and spices.

The purpose of this study was to evaluate the volatile profile of monovarietal wines used in the production of Custoza.

METHODS: Cortese B., Incrocio Manzoni, Trebbiano Toscano, Garganega and Tocai Friulano mono-varietal wines were produced by a local winery during the 2020 vintage. Wines were samples at the end of alcoholic fermentation. Free volatile compounds were analyzed using SPME-GC-MS techniques. All data were treated by analysis of variance (ANOVA) for statistical purposes.

RESULTS: Greater presence of trans-linalool oxide, alpha-terpineol, TDN, methyl salycilate and dimethyl sulfide (DMS) was observed in wines produced from grapes of the Cortese B. variety, one of the four varieties main. Monovarietal wines produced from Incrocio Manzoni grapes, one of the minor varieties, showed a greater content of cis-linalool oxide. In Trebbiano Toscano, a greater content of linalyl acetate and beta-damascenone was observed, while a greater presence of methanthiol was found in wines produced from the Tocai Friulano variety

CONCLUSIONS

This study provided a first insight in the potential contribution of the different varietal wines belonging to the Custoza appellation to the aroma composition of the final wines. For both main varieties (Tocai Friulano, Trebbiano Toscano and Cortese B.) and secondary varieties such as the Incontro Manzoni, differences in terpene, norisporeninds and sulfur compound content were observed. Further studies should investigate whether these differences should be attributed to specific varietal patterns and/or to viticultural and winemaking variables.

ACKNOWLEDGMENT

he present work was supported by Cantina di Custoza

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Beatrice Perina

University of Verona,Davide, SLAGHENAUFI, University of Verona Giovanni, LUZZINI, University of Verona Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

custoza, custoza varieties, white wine, aroma compounds

Citation

Related articles…

Integration of wine cultivation history for characterizing the terroirs of Côte d’Or (Burgundy, France)

Les aires d’appellations de la Côte d’Or résultent d’une sélection humaine empirique, historique et évolutive en adéquation avec les facteurs naturels. Afin de comprendre quels facteurs naturels et humains agissent sur le caractère et l’évolution des terroirs des Côtes de Nuits et de Beaune, une méthodologie de recherche a été développée. Elle s’articule autour de deux axes, la caractérisation physique des lieux-dits viticoles et l’historicité de la qualité de ces lieux-dits. Le travail avec un S.I.G permet d’étudier l’évolution spatiale et temporelle de la qualité.

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.