Macrowine 2021
IVES 9 IVES Conference Series 9 Aroma composition of mono-varietal white wines for the production of Custoza

Aroma composition of mono-varietal white wines for the production of Custoza

Abstract

AIM: The appellation “Bianco di Custoza” or “Custoza”, born in 1971, is one of the oldest white wines Protected Designation of Origin in Italy. The production area lies on the morainic hills located south-east of Lake Garda, in the province of Verona. The wines belonging to this appellation are obtained from grapes of main varieties, namely Cortese B., Garganega, Trebbiano Toscano and Tocai Friulano alone or jointly for a minimum of 70% (each one not exceeding a maximum of 45%). In addition, Malvasia, Riesling Italico and Renano, Pinot Bianco, Chardonnay and Incrocio Manzoni (cross between Riesling Renano and Pinot Bianco) varieties, alone or jointly, can contribute to the production for a maximum of 30%. According to the appellation regulation, the sensory profile of these wines should be characterized by fruity and floral notes, sometimes with hints of aromatic herbs and spices.

The purpose of this study was to evaluate the volatile profile of monovarietal wines used in the production of Custoza.

METHODS: Cortese B., Incrocio Manzoni, Trebbiano Toscano, Garganega and Tocai Friulano mono-varietal wines were produced by a local winery during the 2020 vintage. Wines were samples at the end of alcoholic fermentation. Free volatile compounds were analyzed using SPME-GC-MS techniques. All data were treated by analysis of variance (ANOVA) for statistical purposes.

RESULTS: Greater presence of trans-linalool oxide, alpha-terpineol, TDN, methyl salycilate and dimethyl sulfide (DMS) was observed in wines produced from grapes of the Cortese B. variety, one of the four varieties main. Monovarietal wines produced from Incrocio Manzoni grapes, one of the minor varieties, showed a greater content of cis-linalool oxide. In Trebbiano Toscano, a greater content of linalyl acetate and beta-damascenone was observed, while a greater presence of methanthiol was found in wines produced from the Tocai Friulano variety

CONCLUSIONS

This study provided a first insight in the potential contribution of the different varietal wines belonging to the Custoza appellation to the aroma composition of the final wines. For both main varieties (Tocai Friulano, Trebbiano Toscano and Cortese B.) and secondary varieties such as the Incontro Manzoni, differences in terpene, norisporeninds and sulfur compound content were observed. Further studies should investigate whether these differences should be attributed to specific varietal patterns and/or to viticultural and winemaking variables.

ACKNOWLEDGMENT

he present work was supported by Cantina di Custoza

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Beatrice Perina

University of Verona,Davide, SLAGHENAUFI, University of Verona Giovanni, LUZZINI, University of Verona Maurizio, UGLIANO, University of Verona

Contact the author

Keywords

custoza, custoza varieties, white wine, aroma compounds

Citation

Related articles…

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Effect of cytokinin and auxin application on double cropping performance in Vitis vinifera: preliminary findings

Double cropping is a novel technique, driven by the extension of the growing season caused by global warming.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.