Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Abstract

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]. Different LAB strains belonging to species Lactiplantibacillus plantarum and Oenococcus oeni are able to diversify wines under the sensory aspect after malolactic fermentation [2]. In this context, the sensory impact of malolactic fermentation conducted on Nero d’Avola grape musts in Sicily using 4 commercial starters LAB was investigated.

METHODS: bunches of Nero d’Avola grapes, after destemming, were aliquoted into ten stainless steel tanks and inoculated with Saccharomyces cerevisiae NF213[3]. Five trials were carried out in relation to the commercial LAB strain used for malolactic fermentation: ML PrimeTM (T13), Lalvin VP41® (T14), O-Mega® (T15) and PN4® (T16). ML PrimeTM was a commercial formulation based on L. plantarum, while Lalvin VP41®, O-Mega® and PN4® contained O. oeni. All LAB strains were added to the must after 24 h of yeast inoculum. An experimental control production was carried out in the absence of LAB starter. During fermentation, physicochemical and microbiological parameters were determined. Furthermore, through interdelta (yeast) and RAPD-PCR (LAB) analysis, the dominance of the starter was determined. After 15 days of maceration, the wines were racked and bottled. Six months after bottling, the volatile organic component was determined and the sensory evaluation of the experimental wines was performed.

RESULTS: A genotypic approach demonstrated a dominance of starter strains of yeast and LAB ranging from 88 to 92%. The initial content of L-malic acid in Nero d’Avola musts was 1.92 g/L. After 2 days from the addition of LAB, malic acid values were the lowest in T13, while in T14, T15 and T16 no significant reductions in malic acid were reached. At the end of alcoholic fermentation, trials inoculated with different strains of O. oeni (T14, T15 and T16) showed a degradation of malic acid up to 3 weeks after the end of alcoholic fermentation, reaching values lower than 0.3 g/L, whereas in T13 malic acid reached values of 0.6 g/L. In the control trial T17, no malolactic fermentations were recorded. VOC analysis allowed ascertaining the presence of alcohols, carboxylic acids and esters in higher quantities. Sensorial analysis showed a higher preference for trial T13, which obtained the highest results in terms of general acceptability. Slightly lower results were obtained in the other wines.

CONCLUSIONS

The use of L. plantarum improved the aromatic complexity of Nero d’Avola wines compared to those obtained with O. oeni. In this context, the use of ML PrimeTM certainly had a positive influence on several attributes, positively enhancing their sensory characteristics.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giancarlo Moschetti 

Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

lactiplantibacillus plantarum; oenococcus oeni; malolactic fermentation; nero d’avola wine; sensory analysis

Citation

Related articles…

Chemometric profiling of Pinot noir wine from south tyrol as a tool to reach wine style goals

AIM: Pinot Noir (PN) wines produced in South Tyrol were profiled with the aim to provide guidelines for the oenologist to reach specific winemaking goals in terms of typicity and quality.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

Représentation holistique d’une dynamique pluridisciplinaire suite à la cartographie des sols en Beaujolais

Une démarche de cartographie des sols a été engagée en 2009 par l’interprofession des vins du Beaujolais à l’initiative des professionnels de la région. A fin 2015