Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Abstract

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]. Different LAB strains belonging to species Lactiplantibacillus plantarum and Oenococcus oeni are able to diversify wines under the sensory aspect after malolactic fermentation [2]. In this context, the sensory impact of malolactic fermentation conducted on Nero d’Avola grape musts in Sicily using 4 commercial starters LAB was investigated.

METHODS: bunches of Nero d’Avola grapes, after destemming, were aliquoted into ten stainless steel tanks and inoculated with Saccharomyces cerevisiae NF213[3]. Five trials were carried out in relation to the commercial LAB strain used for malolactic fermentation: ML PrimeTM (T13), Lalvin VP41® (T14), O-Mega® (T15) and PN4® (T16). ML PrimeTM was a commercial formulation based on L. plantarum, while Lalvin VP41®, O-Mega® and PN4® contained O. oeni. All LAB strains were added to the must after 24 h of yeast inoculum. An experimental control production was carried out in the absence of LAB starter. During fermentation, physicochemical and microbiological parameters were determined. Furthermore, through interdelta (yeast) and RAPD-PCR (LAB) analysis, the dominance of the starter was determined. After 15 days of maceration, the wines were racked and bottled. Six months after bottling, the volatile organic component was determined and the sensory evaluation of the experimental wines was performed.

RESULTS: A genotypic approach demonstrated a dominance of starter strains of yeast and LAB ranging from 88 to 92%. The initial content of L-malic acid in Nero d’Avola musts was 1.92 g/L. After 2 days from the addition of LAB, malic acid values were the lowest in T13, while in T14, T15 and T16 no significant reductions in malic acid were reached. At the end of alcoholic fermentation, trials inoculated with different strains of O. oeni (T14, T15 and T16) showed a degradation of malic acid up to 3 weeks after the end of alcoholic fermentation, reaching values lower than 0.3 g/L, whereas in T13 malic acid reached values of 0.6 g/L. In the control trial T17, no malolactic fermentations were recorded. VOC analysis allowed ascertaining the presence of alcohols, carboxylic acids and esters in higher quantities. Sensorial analysis showed a higher preference for trial T13, which obtained the highest results in terms of general acceptability. Slightly lower results were obtained in the other wines.

CONCLUSIONS

The use of L. plantarum improved the aromatic complexity of Nero d’Avola wines compared to those obtained with O. oeni. In this context, the use of ML PrimeTM certainly had a positive influence on several attributes, positively enhancing their sensory characteristics.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giancarlo Moschetti 

Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

lactiplantibacillus plantarum; oenococcus oeni; malolactic fermentation; nero d’avola wine; sensory analysis

Citation

Related articles…

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (1)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system. 

First application of an original methodology created to overcome conflicts between stakeholders in an important wine-growing territory: methodology, results, and perspectives in the application of sustainability EME4.1C

Considering the previous research and activities, also, on Sustainability EME4.1C which, as widely known, considers in a harmonious chain all the factors material, immaterial, moral and spiritual related to all aspects environmental, economic, social, existential, relational, ethical, technical and “MetaEthic” indexed 4.1C

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.