Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

Abstract

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]. Different LAB strains belonging to species Lactiplantibacillus plantarum and Oenococcus oeni are able to diversify wines under the sensory aspect after malolactic fermentation [2]. In this context, the sensory impact of malolactic fermentation conducted on Nero d’Avola grape musts in Sicily using 4 commercial starters LAB was investigated.

METHODS: bunches of Nero d’Avola grapes, after destemming, were aliquoted into ten stainless steel tanks and inoculated with Saccharomyces cerevisiae NF213[3]. Five trials were carried out in relation to the commercial LAB strain used for malolactic fermentation: ML PrimeTM (T13), Lalvin VP41® (T14), O-Mega® (T15) and PN4® (T16). ML PrimeTM was a commercial formulation based on L. plantarum, while Lalvin VP41®, O-Mega® and PN4® contained O. oeni. All LAB strains were added to the must after 24 h of yeast inoculum. An experimental control production was carried out in the absence of LAB starter. During fermentation, physicochemical and microbiological parameters were determined. Furthermore, through interdelta (yeast) and RAPD-PCR (LAB) analysis, the dominance of the starter was determined. After 15 days of maceration, the wines were racked and bottled. Six months after bottling, the volatile organic component was determined and the sensory evaluation of the experimental wines was performed.

RESULTS: A genotypic approach demonstrated a dominance of starter strains of yeast and LAB ranging from 88 to 92%. The initial content of L-malic acid in Nero d’Avola musts was 1.92 g/L. After 2 days from the addition of LAB, malic acid values were the lowest in T13, while in T14, T15 and T16 no significant reductions in malic acid were reached. At the end of alcoholic fermentation, trials inoculated with different strains of O. oeni (T14, T15 and T16) showed a degradation of malic acid up to 3 weeks after the end of alcoholic fermentation, reaching values lower than 0.3 g/L, whereas in T13 malic acid reached values of 0.6 g/L. In the control trial T17, no malolactic fermentations were recorded. VOC analysis allowed ascertaining the presence of alcohols, carboxylic acids and esters in higher quantities. Sensorial analysis showed a higher preference for trial T13, which obtained the highest results in terms of general acceptability. Slightly lower results were obtained in the other wines.

CONCLUSIONS

The use of L. plantarum improved the aromatic complexity of Nero d’Avola wines compared to those obtained with O. oeni. In this context, the use of ML PrimeTM certainly had a positive influence on several attributes, positively enhancing their sensory characteristics.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giancarlo Moschetti 

Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

lactiplantibacillus plantarum; oenococcus oeni; malolactic fermentation; nero d’avola wine; sensory analysis

Citation

Related articles…

Understanding the onset of systemic infection of red blotch virus and phenotypic studies of grapevines expressing a red blotch virus infectious clone

Context and purpose of the study. Red Blotch disease, an affliction caused by the Grapevine red blotch-associated virus (GRBaV), represents a formidable challenge for grape growers and winemakers in prominent viticultural regions around the world.

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

Water relations, growth and yield of grapevines in Portugal’s Douro wine region

The hot and dry climate of the Demarcated Region of Douro (DRD), Portugal, particularly during the summer, induces soil water deficits that influence the growth and development of grapevines.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Breeding grapevines for disease and low temperature tolerance: the U.S. perspective

Most grape scion cultivars grown around the world are derived from a single species, Vitis vinifera. Yet, the proportion of interspecific hybrids is increasing for a variety of reasons, including resistance to abiotic stresses such as low temperatures; societal, economic and environmental pressures to reduce pesticide usage; and to add a greater range of flavors to new table grape cultivars.