Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of different strains of lab on quality of catarratto wine produced in sicily

Influence of different strains of lab on quality of catarratto wine produced in sicily

Abstract

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2]. For the first time, in the present study, the impact of malolactic fermentation on Sicilian white wines of the Catarratto cultivar was evaluated by using different commercial LAB strains. Particularly, L. plantarum (ML PrimeTM, Lallemand wine), O. oeni (Lalvin VP41®, O-Mega® and PN4®, Lallemand wine) were used as starter strains for malolactic fermentation.

METHODS: the Catarratto must, after clarification, were aliquoted in steel tanks (2.5 hL). Each tank (5 trials: M8-M12) was inoculated with the indigenous selected strain CS182 Saccharomyces cerevisiae. After 24 hours, ML PrimeTM (M8) , Lalvin VP41® (M9), O-Mega® (M10) and PN4® (M11) were inoculated singularly into grape must. For the control trial, were not added with malolactic starter (M12-MLc). During the alcoholic fermentation, the microbiological and chemical-physical parameters were evaluated. After six months from the date of bottling, the wines were subjected to volatile organic compound investigation and sensory analysis.

RESULTS: grape must showed values of malic acid of 1.58 g/l. Trial M8 inoculated with L. plantarum showed a significant reduction of malic acid reaching values of 1 g/L, three days after inoculum. Trial M9, M10 and M11, inoculated with O. oeni, showed a rapid consumption of malic acid after 15 days of AF and completed malolactic fermentation one week after AF. The VOCs present in highest concentration were 3-methyl-1-butanol in all trials, phenylethyl alcohol in trials M8, M9, and M12, and 2,3-butanediol in M11. The sensorial analysis conducted on the different experimental wines showed a tendency of panelists to prefer trials M8. In fact, wines with the addition of MLPrimeTM, obtained the highest scores for the attributes flavor and odour overall quality, intensity and complexity odours. No unpleasant odours and/or flavours were recorded. Acetic acid content was less than 0.3 g/l in all experimental trials.

CONCLUSIONS

The inoculation of the different commercial LAB strains allowed the malo-lactic fermentation of all wines. L. plantarum proved to be an effective alternative to O. oeni in order to start the malolactic fermentation and the wines were appreciated at sensorial level

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Antonio Alfonzo

Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

Lactiplantibacillus plantarum; Oenococcus Oeni; malolactic fermentation; catarratto wine

Citation

Related articles…

Yeast derivatives: an innovative approach to produce Oenococcus oeni under biofilm form?

The malolactic fermentation can occur naturally or be induced by inoculation of selected bacterial strains, most commonly of Oenococcus oeni.

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

Toward a model of grape proanthocyanidin extraction during vinification

PAs are compartmentalised within the grape berry, and differ in their composition and degree of extractability. Within each compartment, the CWM limits PA extraction firstly by its degree of permeability and secondly its ability to complex with PA molecules.

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).