Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of different strains of lab on quality of catarratto wine produced in sicily

Influence of different strains of lab on quality of catarratto wine produced in sicily

Abstract

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2]. For the first time, in the present study, the impact of malolactic fermentation on Sicilian white wines of the Catarratto cultivar was evaluated by using different commercial LAB strains. Particularly, L. plantarum (ML PrimeTM, Lallemand wine), O. oeni (Lalvin VP41®, O-Mega® and PN4®, Lallemand wine) were used as starter strains for malolactic fermentation.

METHODS: the Catarratto must, after clarification, were aliquoted in steel tanks (2.5 hL). Each tank (5 trials: M8-M12) was inoculated with the indigenous selected strain CS182 Saccharomyces cerevisiae. After 24 hours, ML PrimeTM (M8) , Lalvin VP41® (M9), O-Mega® (M10) and PN4® (M11) were inoculated singularly into grape must. For the control trial, were not added with malolactic starter (M12-MLc). During the alcoholic fermentation, the microbiological and chemical-physical parameters were evaluated. After six months from the date of bottling, the wines were subjected to volatile organic compound investigation and sensory analysis.

RESULTS: grape must showed values of malic acid of 1.58 g/l. Trial M8 inoculated with L. plantarum showed a significant reduction of malic acid reaching values of 1 g/L, three days after inoculum. Trial M9, M10 and M11, inoculated with O. oeni, showed a rapid consumption of malic acid after 15 days of AF and completed malolactic fermentation one week after AF. The VOCs present in highest concentration were 3-methyl-1-butanol in all trials, phenylethyl alcohol in trials M8, M9, and M12, and 2,3-butanediol in M11. The sensorial analysis conducted on the different experimental wines showed a tendency of panelists to prefer trials M8. In fact, wines with the addition of MLPrimeTM, obtained the highest scores for the attributes flavor and odour overall quality, intensity and complexity odours. No unpleasant odours and/or flavours were recorded. Acetic acid content was less than 0.3 g/l in all experimental trials.

CONCLUSIONS

The inoculation of the different commercial LAB strains allowed the malo-lactic fermentation of all wines. L. plantarum proved to be an effective alternative to O. oeni in order to start the malolactic fermentation and the wines were appreciated at sensorial level

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Antonio Alfonzo

Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

Lactiplantibacillus plantarum; Oenococcus Oeni; malolactic fermentation; catarratto wine

Citation

Related articles…

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.

Soil humidity and early leaf water potential affected by water recharge before budbreak in cv. Tempranillo deficitary irrigated during the summer in the D. O. Ribera del Duero

The availability of water for irrigation is usually greater at the beginning of spring than in the following months, until the end of summer, in most regions of Spain.

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Do we have convergence or divergence in firms’ production and business practices in the global wine industry? 

Wine production is a globally significant and intricate industry, characterized by diverse regions, grape varieties, and producers. Competitive advantage in wine production and marketing arises from localized natural attributes known as terroir, combined with transferable expertise in agronomic practices, winemaking methods, packaging, distribution, and marketing. Wine is a very globalized product with 40% of the total output exported. Globalization has prompted discussions on convergence of business and production practices across industries, driven by technological progress and adoption of international standards. However, persisting differences in cultural norms, institutional frameworks, and regulatory environments hinder full convergence.