Terroir 2008 banner
IVES 9 IVES Conference Series 9 Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Abstract

Electrical Resistivity Tomography (ERT) measurements have been performed by the Wenner method on an experimental plot situated in Gaillac region. They have been carried out during two highly contrasted hydric periods: (i) dry (spring 2006), (ii) humid (spring 2007) with soils close to field capacity. Results are compared to evaluate the hydrological behavior of the plot in relation with its main pedo-geological characteristics. The three reiterated transects (North-Median-South) give a general view of the plot configuration in agreement with the pedo-geologic observation trenches data. All the resistivity profiles show the superposition of two highly contrasted sequences. The first sequence, at the bottom, is a very low resistivity values sequence (up to 40 Ω.m) which coincides with the argillaceous-dominated molassic bed-rock. The second is a high to very high resistivity values sequence (from 300 Ω.m to more than 1500 Ω.m at the very top) which coincides with a silty-sandy and gravels soil complex of about 2 m thick. Resistivity of the molassic clayed-dominated geological basement does not depend on climatic conditions and stays at a very low value independently of dry or humid periods. Resistivity values of the silty-sandy/gravels horizons vary with a factor 2, from 300 to 750 Ω.m in humid conditions and from 750 Ω.m to 1500 Ω.m under dry conditions. Furthermore, the invariant location in the resistivity profiles of the two sequences, implies that the water runoff at the molassic bed rock/gravels interface is short-lived and most probably of low amplitude.
The hydric behavior of the experimental plot evidences a high risk of drought stress during summer. The choice of a rootstock with a hemi-plunging habit (Gravesac) will allow roots to attain the moisture at the molasse/gravels boundary and protect them from excess of drought.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Pierre COURJAULT-RADÉ (1), José DARROZES (1), Muriel LLUBES (2), Eric MAIRE (1), Marguerite MUNOZ (1) and Nicolas HIRISSOU (3)

(1) Laboratoire des Mécanismes de Transfert en Géologie (LMTG) – Université de Toulouse – UMR 5563 – CNRS – 14, Avenue E. Belin 31400 Toulouse (France)
(2) Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)- Université de Toulouse – 14, Avenue E. Belin 31400 Toulouse (France)
(3) Domaine du Moulin, Chemin de Bastié, 81600 Gaillac (France)

Contact the author

Keywords

AOC Gaillac, Fonctionnement hydrique, Pédo-géologie, Résistivité, Sud-Ouest France

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

Vulnerability of vineyard soils to compaction: the case study of DOC Piave (Veneto region, Italy)

The objective of this work is to study the vulnerability of vineyard soil to compaction.

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.