Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Abstract

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds. Microwave-assisted extraction (MW) is a novel extraction technique for winemaking, widely applied in other foods. Stems addition (S) during vinification can be a sustainable technology for phenolic and aroma contribution without additional cost. Therefore, this study aimed to evaluate the combined effect of MW application with stem additions in different conditions, before fermentation, on the chemical composition and sensory properties of Bonarda wines.

METHODS: During two consecutive vintages (2018-2019), 450 kg of grapes were harvested (≈24°Brix) from a commercial vineyard (Mendoza, Argentina), and made into wine in 25 L following a standard protocol. The experimental design consisted of ten treatments (two factors) by triplicate. Two maceration strategies were applied [control (C), and microwaved-assisted extraction after grape crushing (MW; 2450 MHz, 7600 W, 45-50°C)], combined with five stem-contact conditions [control without stems (WS), 50% stems addition (S50), 50% stems addition + MW of the stems (S50MW; 2450 MHz, 7600 W, 60°C), 100% stems addition (S100), 100% stems addition + MW (S100MW)]. Wines were analyzed for basic chemistry (1), phenolic composition and color parameters (2-5), polysaccharides (6), and aroma profiles (7). Additionally, a descriptive sensory analysis (QDA) was performed with 19 panelists in 8 sessions, and 22 attributes were established.

RESULTS: In both seasons, the application of microwaves significantly reduced microbial flora in musts (fungi, yeasts, and acetic acid bacteria), in addition to inhibiting enzymatic activity (cellulase and pectinase). Due to the significant difference of the vintage and its interaction with some of the studied factors, the chemical and sensory characterization of wines were evaluated separately for each season. The 2018 wines showed higher pH with stem additions and MW application in both matrices. Stem additions increased tannin content by 63% (S100) and by >35% for the other treatments; while MW consistently improved phenolic extraction (mainly, anthocyanins and derivatives), and polymeric pigments formation. Likewise, combined strategies increased polysaccharides extraction (FI, 165 kDa; FII, 45 kDa; FIII, 12 kDa), enhanced wine color (greater saturation), and intensified violet hue. Finally, the PCA including sensory variables described the MWS50 wines with higher color intensity and chocolate aroma, and 100% stems addition treatments with more astringency and violet hue. The behavior observed in 2019 was similar, with a more marked effect of MW on wine color (C*ab and polymeric pigments).

CONCLUSIONS:

The reported results are promising and are considered the first advance in the knowledge of the impact of the proposed technological strategies on the chemical and sensory quality of red wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Martín Fanzone 

Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina.,Ignacio Coronado. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Santiago Sari. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Anibal Catania. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Mariona Gil i Cortiella. Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile. Cristina Ubeda. Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Santiago 8910060, Chile. Mariela Assof. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Viviana Jofré. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Vilma Morata de Ambrosini. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, Bernardo de Irigoyen 375, 5600, Mendoza, Argentina. Alvaro Peña Neira. Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile.

Contact the author

Keywords

microwave-assisted extraction, stems, bonarda, phenolics, polysaccharides, aromas, sensory analysis

Citation

Related articles…

Launching the GiESCO guide

Considering that the transfer of research results to the professional level is one of the keys to progress, GiESCO proposes to publish a technical guide supported by scientific references and in the form of standard sheets.

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

Physical-mechanical berry skin traits as additional indicators of resistance to botrytis bunch rot and grape sunburn

Climate change increasingly leads to altered growing conditions in viticulture, such as heat stress, drought or high infection pressure favoring pathogen infection.