Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Abstract

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds. Microwave-assisted extraction (MW) is a novel extraction technique for winemaking, widely applied in other foods. Stems addition (S) during vinification can be a sustainable technology for phenolic and aroma contribution without additional cost. Therefore, this study aimed to evaluate the combined effect of MW application with stem additions in different conditions, before fermentation, on the chemical composition and sensory properties of Bonarda wines.

METHODS: During two consecutive vintages (2018-2019), 450 kg of grapes were harvested (≈24°Brix) from a commercial vineyard (Mendoza, Argentina), and made into wine in 25 L following a standard protocol. The experimental design consisted of ten treatments (two factors) by triplicate. Two maceration strategies were applied [control (C), and microwaved-assisted extraction after grape crushing (MW; 2450 MHz, 7600 W, 45-50°C)], combined with five stem-contact conditions [control without stems (WS), 50% stems addition (S50), 50% stems addition + MW of the stems (S50MW; 2450 MHz, 7600 W, 60°C), 100% stems addition (S100), 100% stems addition + MW (S100MW)]. Wines were analyzed for basic chemistry (1), phenolic composition and color parameters (2-5), polysaccharides (6), and aroma profiles (7). Additionally, a descriptive sensory analysis (QDA) was performed with 19 panelists in 8 sessions, and 22 attributes were established.

RESULTS: In both seasons, the application of microwaves significantly reduced microbial flora in musts (fungi, yeasts, and acetic acid bacteria), in addition to inhibiting enzymatic activity (cellulase and pectinase). Due to the significant difference of the vintage and its interaction with some of the studied factors, the chemical and sensory characterization of wines were evaluated separately for each season. The 2018 wines showed higher pH with stem additions and MW application in both matrices. Stem additions increased tannin content by 63% (S100) and by >35% for the other treatments; while MW consistently improved phenolic extraction (mainly, anthocyanins and derivatives), and polymeric pigments formation. Likewise, combined strategies increased polysaccharides extraction (FI, 165 kDa; FII, 45 kDa; FIII, 12 kDa), enhanced wine color (greater saturation), and intensified violet hue. Finally, the PCA including sensory variables described the MWS50 wines with higher color intensity and chocolate aroma, and 100% stems addition treatments with more astringency and violet hue. The behavior observed in 2019 was similar, with a more marked effect of MW on wine color (C*ab and polymeric pigments).

CONCLUSIONS:

The reported results are promising and are considered the first advance in the knowledge of the impact of the proposed technological strategies on the chemical and sensory quality of red wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Martín Fanzone 

Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina.,Ignacio Coronado. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Santiago Sari. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Anibal Catania. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Mariona Gil i Cortiella. Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile. Cristina Ubeda. Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Santiago 8910060, Chile. Mariela Assof. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Viviana Jofré. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Vilma Morata de Ambrosini. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, Bernardo de Irigoyen 375, 5600, Mendoza, Argentina. Alvaro Peña Neira. Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile.

Contact the author

Keywords

microwave-assisted extraction, stems, bonarda, phenolics, polysaccharides, aromas, sensory analysis

Citation

Related articles…

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.

Indice bioclimatique de qualité Fregoni

La viticulture dans le monde est sous l’étroite dépendance des conditions climatiques. En effet, la culture de la vigne est concentrée entre 30° et 50° de latitude Nord et 30° à 40° de latitude Sud

La variabilità del colore in vini rosati dell’Italia meridionale

Nei vini rosati, è il colore ad avere il primo impatto con il consumatore. Esso risulterà tanto più accattivante, quanto più elegante e raffinato si presenta.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.