Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Abstract

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds. Microwave-assisted extraction (MW) is a novel extraction technique for winemaking, widely applied in other foods. Stems addition (S) during vinification can be a sustainable technology for phenolic and aroma contribution without additional cost. Therefore, this study aimed to evaluate the combined effect of MW application with stem additions in different conditions, before fermentation, on the chemical composition and sensory properties of Bonarda wines.

METHODS: During two consecutive vintages (2018-2019), 450 kg of grapes were harvested (≈24°Brix) from a commercial vineyard (Mendoza, Argentina), and made into wine in 25 L following a standard protocol. The experimental design consisted of ten treatments (two factors) by triplicate. Two maceration strategies were applied [control (C), and microwaved-assisted extraction after grape crushing (MW; 2450 MHz, 7600 W, 45-50°C)], combined with five stem-contact conditions [control without stems (WS), 50% stems addition (S50), 50% stems addition + MW of the stems (S50MW; 2450 MHz, 7600 W, 60°C), 100% stems addition (S100), 100% stems addition + MW (S100MW)]. Wines were analyzed for basic chemistry (1), phenolic composition and color parameters (2-5), polysaccharides (6), and aroma profiles (7). Additionally, a descriptive sensory analysis (QDA) was performed with 19 panelists in 8 sessions, and 22 attributes were established.

RESULTS: In both seasons, the application of microwaves significantly reduced microbial flora in musts (fungi, yeasts, and acetic acid bacteria), in addition to inhibiting enzymatic activity (cellulase and pectinase). Due to the significant difference of the vintage and its interaction with some of the studied factors, the chemical and sensory characterization of wines were evaluated separately for each season. The 2018 wines showed higher pH with stem additions and MW application in both matrices. Stem additions increased tannin content by 63% (S100) and by >35% for the other treatments; while MW consistently improved phenolic extraction (mainly, anthocyanins and derivatives), and polymeric pigments formation. Likewise, combined strategies increased polysaccharides extraction (FI, 165 kDa; FII, 45 kDa; FIII, 12 kDa), enhanced wine color (greater saturation), and intensified violet hue. Finally, the PCA including sensory variables described the MWS50 wines with higher color intensity and chocolate aroma, and 100% stems addition treatments with more astringency and violet hue. The behavior observed in 2019 was similar, with a more marked effect of MW on wine color (C*ab and polymeric pigments).

CONCLUSIONS:

The reported results are promising and are considered the first advance in the knowledge of the impact of the proposed technological strategies on the chemical and sensory quality of red wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Martín Fanzone 

Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina.,Ignacio Coronado. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Santiago Sari. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Anibal Catania. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Mariona Gil i Cortiella. Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile. Cristina Ubeda. Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Santiago 8910060, Chile. Mariela Assof. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Viviana Jofré. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Vilma Morata de Ambrosini. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, Bernardo de Irigoyen 375, 5600, Mendoza, Argentina. Alvaro Peña Neira. Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile.

Contact the author

Keywords

microwave-assisted extraction, stems, bonarda, phenolics, polysaccharides, aromas, sensory analysis

Citation

Related articles…

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape.

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi. 

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.