Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Abstract

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds. Microwave-assisted extraction (MW) is a novel extraction technique for winemaking, widely applied in other foods. Stems addition (S) during vinification can be a sustainable technology for phenolic and aroma contribution without additional cost. Therefore, this study aimed to evaluate the combined effect of MW application with stem additions in different conditions, before fermentation, on the chemical composition and sensory properties of Bonarda wines.

METHODS: During two consecutive vintages (2018-2019), 450 kg of grapes were harvested (≈24°Brix) from a commercial vineyard (Mendoza, Argentina), and made into wine in 25 L following a standard protocol. The experimental design consisted of ten treatments (two factors) by triplicate. Two maceration strategies were applied [control (C), and microwaved-assisted extraction after grape crushing (MW; 2450 MHz, 7600 W, 45-50°C)], combined with five stem-contact conditions [control without stems (WS), 50% stems addition (S50), 50% stems addition + MW of the stems (S50MW; 2450 MHz, 7600 W, 60°C), 100% stems addition (S100), 100% stems addition + MW (S100MW)]. Wines were analyzed for basic chemistry (1), phenolic composition and color parameters (2-5), polysaccharides (6), and aroma profiles (7). Additionally, a descriptive sensory analysis (QDA) was performed with 19 panelists in 8 sessions, and 22 attributes were established.

RESULTS: In both seasons, the application of microwaves significantly reduced microbial flora in musts (fungi, yeasts, and acetic acid bacteria), in addition to inhibiting enzymatic activity (cellulase and pectinase). Due to the significant difference of the vintage and its interaction with some of the studied factors, the chemical and sensory characterization of wines were evaluated separately for each season. The 2018 wines showed higher pH with stem additions and MW application in both matrices. Stem additions increased tannin content by 63% (S100) and by >35% for the other treatments; while MW consistently improved phenolic extraction (mainly, anthocyanins and derivatives), and polymeric pigments formation. Likewise, combined strategies increased polysaccharides extraction (FI, 165 kDa; FII, 45 kDa; FIII, 12 kDa), enhanced wine color (greater saturation), and intensified violet hue. Finally, the PCA including sensory variables described the MWS50 wines with higher color intensity and chocolate aroma, and 100% stems addition treatments with more astringency and violet hue. The behavior observed in 2019 was similar, with a more marked effect of MW on wine color (C*ab and polymeric pigments).

CONCLUSIONS:

The reported results are promising and are considered the first advance in the knowledge of the impact of the proposed technological strategies on the chemical and sensory quality of red wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Martín Fanzone 

Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina.,Ignacio Coronado. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Santiago Sari. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Anibal Catania. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Mariona Gil i Cortiella. Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile. Cristina Ubeda. Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Santiago 8910060, Chile. Mariela Assof. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Viviana Jofré. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Vilma Morata de Ambrosini. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, Bernardo de Irigoyen 375, 5600, Mendoza, Argentina. Alvaro Peña Neira. Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile.

Contact the author

Keywords

microwave-assisted extraction, stems, bonarda, phenolics, polysaccharides, aromas, sensory analysis

Citation

Related articles…

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.