Macrowine 2021
IVES 9 IVES Conference Series 9 From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

Abstract

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps (Kotseridis, et al., 1999), as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine. The aim of this study was to investigate the volatile chemical composition of wines obtained from grapes harvested in selected vineyards during three consecutive vintages, assess the existence of recurring patterns that could represent unique aroma chemical signatures and to identify key grape compositional features underling such aroma signature.

METHODS: Corvina and Corvinone grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three consecutive vintages. Winemaking was performed under standardized conditions. Free volatile compounds and glycosidic precursors were analysed with GC-MS analysis co. Sensory characteristics of the wines have been investigated through sorting tasks performed with semi-trained panel.

RESULTS: Application of multivariate data analysis techniques allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine regardless of vintages. The main drivers associated with these chemical signatures were terpenes (linalool, α-terpineol), norisoprenoids (vitispirane, TDN, TPB), and, unexpectedly some fermentation derived esters. Wines’ terpenes content was related with grapes terpenes pool. In particular variations in wine linalool content were strongly associated with the grape content of different linalool forms. Finally, in the case of esters, a strong correlation between grape content of yeast assimilable nitrogen (YAN) and wine ester content was observed, further broadening the boundaries of vineyard factors able to influence wine aroma. Patterns of odor similarities were observed during sensory evaluation, indicating a recurring association between geographical origin and occurrence of aroma compounds such as linear and cyclic terpenes, esters or norisoprenoids. 

CONCLUSIONS: 

This study provides evidence for the existence of volatile chemical signatures that are representative of geographical origin. Identification of grapes compositional characteristics related to the main drivers of wines chemical signature provides clues to support producers in identifying and managing appropriate vineyard and/or winemaking practices, in the quest of producing wines expressing their sense of place and ‘terroir’

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Jessica, SAMANIEGO-SOLIS, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

chemical signature of geographical identity, red wine aroma, valpolicella, terroir, crus

Citation

Related articles…

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

How distinctive are single vineyard Gewürztraminer musts and wines from Alto Adige (Italy) based on untargeted analysis, sensory profiling, and chemometric elaboration?

Vitis vinifera L. ‘Gewürztraminer’ is a historical grape variety of Alto Adige (Südtirol), Italy, which is widely grown in the area of Tramin an der Weinstraße, but is also grown globally. It produces highly aromatic wines that are strongly influenced by the terroir of the vineyard sites where they are grown. This study looked at musts and young wines from ‘Gewürztraminer’ grapes harvested in seven distinct vineyards near Tramin and then processed at Cantina di Termeno, minimizing winemaking protocol variability. Samples were profiled using bidimensional gas chromatography–time-of-flight mass spectrometry, liquid chromatography coupled to electrochemical detection, and near-IR spectrometry. The data were subjected to Principle Component Analysis and Hierarchical Clustering Analysis. Sensory discriminant testing was undertaken using the sorting method with a semi-trained panel, and the data were processed using Multidimensional Scaling. Seven must/wine pairs could be distinguished based on their untargeted volatilome profiles and on sensory evaluation. As expected, there were greater differences in the volatile compounds between the wines than between the musts. The wines from vineyards 4 and 5 were nonetheless quite homogenous in terms of chemical and sensory analyses, as were the wines from vineyards 1 and 3. For the phenolic profile, differences were noted between the musts and wines of vineyards 2, 3, and 4, but the musts from vineyards 5 and 7 were similar. Sensory analysis showed the wines from vineyards 6 and 7 to be distinct from the rest. These results reinforce that the composition of ‘Gewürztraminer’ musts and wines is strongly determined by vineyard site, even in a small geographic area with high variability of the terroir (soil and microclimate), and that these differences are apparent in the flavours and aromas of the finished wines. Further confirmation would require a larger sample of wines, preferably from several vintages.

Elucidating white wines peptides: An analytical breaktrough

The chemistry of wine is particularly complex due to biochemical and chemical interactions that significantly modify its organoleptic characteristics and stability over time. Aging on lees is a well-known practice during which various compounds are released, ensuring wines oxidative stability and its overall sensory quality [1,2].