Macrowine 2021
IVES 9 IVES Conference Series 9 Monitoring the tawny port wine aging process using precision enology

Monitoring the tawny port wine aging process using precision enology

Abstract

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny. In this Port wine style, there are some special categories like Tawny Reserve, Tawny with Indication of Age (10, 20, 30, and 40 years), and “Colheita” that are commercialized worldwide. This last category is an exception, as these wines are from a single vintage [1]. In Tawny Port wine the oxidative aging process is multifactorial and critical for reaching the required quality. So, real-time monitoring of important intrinsic and extrinsic factors known to impact both wine quality and aging time are important to optimize and to manage the natural inconsistency among wines aged in diverse long-used wood barrels. This work shows the design, development, and implementation of a remote distributed system to monitor factors that are identified to be critical for the Tawny Port wine aging process.

METHODS: The Tawny Port wine aging process was monitored in two equal wineries – one of them with controlled temperature– in Vallegre, Porto S.A.. Barrels were instrumented with sensors to measure parameters during the aging process, specifically: pH, redox potential, dissolved oxygen, and temperature. The monitoring process was done using an RS-485 industrial network, which interconnects the mentioned sensors [2].

RESULTS: The distributed monitoring system was capable to detect differences among barrels and among the different storage conditions (controlled and room temperature). Redox potential and dissolved oxygen were the wine’s parameters where the differences among the different barrels were higher under the same storage conditions. Since the Tawny Port wine aging process is oxidative, a variation in the wine’s aging process among barrels is to be expected. Significant differences were detected in the oxygen consumption rate among the different barrels. Differences in the phenolic composition were also observed in the aged wine, both at controlled and room temperature

CONCLUSIONS

Results indicated that the distributed monitoring system was capable to detect variations among barrels and among both storage conditions: controlled and room temperature. Actually, redox potential and dissolved oxygen were the wine’s factors where the variances found were higher among wood barrels, while under the same storage conditions. This methodology is based on easy-to-use implanted systems, with the intention of giving an important contribution to other projects in the area of precision enology

Acknowledgment

The authors want to acknowledge FCT Portugal for funding the CQ – VR through the grant (UIDB/00616/2020 and UIDP/00616/2020), to project INNPORT “Otimização do processo de envelhecimento do vinho do Porto Tawny” and Vallegre Company.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Contact the author

Keywords

precision enology, wine aging, instrumentation

Citation

Related articles…

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control.

“Terroir” studies in the Côtes du Rhône controlled appellation: from zoning to application

This work gives a summary of the most important programmes about viticultural « terroirs », developed on the « Côtes du Rhône » controlled appellation area for about twenty years.

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.