Macrowine 2021
IVES 9 IVES Conference Series 9 Monitoring the tawny port wine aging process using precision enology

Monitoring the tawny port wine aging process using precision enology

Abstract

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny. In this Port wine style, there are some special categories like Tawny Reserve, Tawny with Indication of Age (10, 20, 30, and 40 years), and “Colheita” that are commercialized worldwide. This last category is an exception, as these wines are from a single vintage [1]. In Tawny Port wine the oxidative aging process is multifactorial and critical for reaching the required quality. So, real-time monitoring of important intrinsic and extrinsic factors known to impact both wine quality and aging time are important to optimize and to manage the natural inconsistency among wines aged in diverse long-used wood barrels. This work shows the design, development, and implementation of a remote distributed system to monitor factors that are identified to be critical for the Tawny Port wine aging process.

METHODS: The Tawny Port wine aging process was monitored in two equal wineries – one of them with controlled temperature– in Vallegre, Porto S.A.. Barrels were instrumented with sensors to measure parameters during the aging process, specifically: pH, redox potential, dissolved oxygen, and temperature. The monitoring process was done using an RS-485 industrial network, which interconnects the mentioned sensors [2].

RESULTS: The distributed monitoring system was capable to detect differences among barrels and among the different storage conditions (controlled and room temperature). Redox potential and dissolved oxygen were the wine’s parameters where the differences among the different barrels were higher under the same storage conditions. Since the Tawny Port wine aging process is oxidative, a variation in the wine’s aging process among barrels is to be expected. Significant differences were detected in the oxygen consumption rate among the different barrels. Differences in the phenolic composition were also observed in the aged wine, both at controlled and room temperature

CONCLUSIONS

Results indicated that the distributed monitoring system was capable to detect variations among barrels and among both storage conditions: controlled and room temperature. Actually, redox potential and dissolved oxygen were the wine’s factors where the variances found were higher among wood barrels, while under the same storage conditions. This methodology is based on easy-to-use implanted systems, with the intention of giving an important contribution to other projects in the area of precision enology

Acknowledgment

The authors want to acknowledge FCT Portugal for funding the CQ – VR through the grant (UIDB/00616/2020 and UIDP/00616/2020), to project INNPORT “Otimização do processo de envelhecimento do vinho do Porto Tawny” and Vallegre Company.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Contact the author

Keywords

precision enology, wine aging, instrumentation

Citation

Related articles…

Territorial delimitation of viticultural “Oltrepo Pavese (Lombardy)” using grape ripening precocity

L’Oltrepò Pavese est une zone de collines de la Lombardie, région située au nord de l’Italie avec un vignoble qui s’étend sur près de 15 000 ha. Cette zone représente la plus grande aire de production de la région et une des A.O.C. les plus étendues de tout le pays. Les cépages les plus cultivés, même historiquement, sont autochtones : la Barbera et la Croatina utilisés pour la production de vin rouge «Oltrepò» et le Pinot noir pour la production de vins mousseux. Pour le zonage viticole de cette A.O.C., il a été pris en considération: le climat, les sols, les caractéristiques viti-vinicoles.

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area

Precipitation variability in a temperate coastal region and how it affects Tannat and Albariño cultivars 

Climate is one of the main components that defines the development and behavior of the plant, conditioning the health status and the final quality of the grapes. In temperate coastal climates such as in Uruguay (latitude 35° S, longitude 55° O), precipitations during the growing season present high interannual variability, with a average of 100 mm per month. This variability means that plants must adapt to conditions from one year to the next.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…