Macrowine 2021
IVES 9 IVES Conference Series 9 Monitoring the tawny port wine aging process using precision enology

Monitoring the tawny port wine aging process using precision enology

Abstract

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny. In this Port wine style, there are some special categories like Tawny Reserve, Tawny with Indication of Age (10, 20, 30, and 40 years), and “Colheita” that are commercialized worldwide. This last category is an exception, as these wines are from a single vintage [1]. In Tawny Port wine the oxidative aging process is multifactorial and critical for reaching the required quality. So, real-time monitoring of important intrinsic and extrinsic factors known to impact both wine quality and aging time are important to optimize and to manage the natural inconsistency among wines aged in diverse long-used wood barrels. This work shows the design, development, and implementation of a remote distributed system to monitor factors that are identified to be critical for the Tawny Port wine aging process.

METHODS: The Tawny Port wine aging process was monitored in two equal wineries – one of them with controlled temperature– in Vallegre, Porto S.A.. Barrels were instrumented with sensors to measure parameters during the aging process, specifically: pH, redox potential, dissolved oxygen, and temperature. The monitoring process was done using an RS-485 industrial network, which interconnects the mentioned sensors [2].

RESULTS: The distributed monitoring system was capable to detect differences among barrels and among the different storage conditions (controlled and room temperature). Redox potential and dissolved oxygen were the wine’s parameters where the differences among the different barrels were higher under the same storage conditions. Since the Tawny Port wine aging process is oxidative, a variation in the wine’s aging process among barrels is to be expected. Significant differences were detected in the oxygen consumption rate among the different barrels. Differences in the phenolic composition were also observed in the aged wine, both at controlled and room temperature

CONCLUSIONS

Results indicated that the distributed monitoring system was capable to detect variations among barrels and among both storage conditions: controlled and room temperature. Actually, redox potential and dissolved oxygen were the wine’s factors where the variances found were higher among wood barrels, while under the same storage conditions. This methodology is based on easy-to-use implanted systems, with the intention of giving an important contribution to other projects in the area of precision enology

Acknowledgment

The authors want to acknowledge FCT Portugal for funding the CQ – VR through the grant (UIDB/00616/2020 and UIDP/00616/2020), to project INNPORT “Otimização do processo de envelhecimento do vinho do Porto Tawny” and Vallegre Company.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Contact the author

Keywords

precision enology, wine aging, instrumentation

Citation

Related articles…

Agronomic and oenological characterization of the intraspecific cross ‘Passau’ in the aim of its commercial use

The study of new wine grape cultivars can be interesting to diversify the local wine productions without using international varieties. With this aim some Vitis vinifera intraspecific crosses obtained by Prof. Dalmasso in the 1930s and registered in the Italian National Catalogue in 1977, have been studied in the last years.

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].

L’Appellation d’Origine Contrôlée « Huile Essentielle de Lavande de Haute Provence »

Depuis des siècles, la lavande est utilisée pour son parfum et pour ses vertus thérapeutiques naturelles.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.