Macrowine 2021
IVES 9 IVES Conference Series 9 Winemaking processes discrimination by using qNMR metabolomics

Winemaking processes discrimination by using qNMR metabolomics

Abstract

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a). Since human factors are less studied while they also contribute a lot to the wine making, we wondered if this technique could also dissociate physical or chemical processes used in oenology. The goal of this work is to allow a better understanding of the interactions between the oenological processes and wine by finding metabolites that are responsible of winemaking processes’s differentiations through 1H‑NMR metabolomics targeted and untargeted (fingerprinting) approaches combined with advanced chemiometrics.

METHODS: Wine analyses were realized by qNMR approaches. Targeted (based on nearly fifty wine constituents) and untargeted analyses were carried out on wines having undergone several physical and chemical processes. Principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and similarity score (S-score) (Gougeon et al., 2019b) were performed out for the analytical discrimination of winemaking processes.

RESULTS: qNMR analyses associated with chemometrics allow discriminating not only the physical processed such as the filtration but also chemical processes like the maceration temperature, enzyme treatment and fining agent effects. Furthermore, the impacted metabolites were highlighted providing valuable data on the winemaking processes investigated.

CONCLUSIONS:

qNMR metabolomics offers a fast and reliable method to study the effects of winemaking practices on wine quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Inès Le Mao

University of Bordeaux, Œnology EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France,Gregory Da Costa, Jean Martin, Wiame El Batoul, Charlyne Bautista, Soizic Lacampagne, Tristan Richard University of Bordeaux, Œnology EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France

Contact the author

Keywords

metabolomics, qnmr, winemaking processes, quality

Citation

Related articles…

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

Geological influences on terroir development

Geological influences on terroir development

Precision viticultural strategy for managing intra-vineyard variability in grape aroma using UAV-based vigour indices

In several cultivars, such as Gewürztraminer and Riesling, grape and wine aromas are determined by volatile terpenoids.

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.