Macrowine 2021
IVES 9 IVES Conference Series 9 Winemaking processes discrimination by using qNMR metabolomics

Winemaking processes discrimination by using qNMR metabolomics

Abstract

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a). Since human factors are less studied while they also contribute a lot to the wine making, we wondered if this technique could also dissociate physical or chemical processes used in oenology. The goal of this work is to allow a better understanding of the interactions between the oenological processes and wine by finding metabolites that are responsible of winemaking processes’s differentiations through 1H‑NMR metabolomics targeted and untargeted (fingerprinting) approaches combined with advanced chemiometrics.

METHODS: Wine analyses were realized by qNMR approaches. Targeted (based on nearly fifty wine constituents) and untargeted analyses were carried out on wines having undergone several physical and chemical processes. Principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and similarity score (S-score) (Gougeon et al., 2019b) were performed out for the analytical discrimination of winemaking processes.

RESULTS: qNMR analyses associated with chemometrics allow discriminating not only the physical processed such as the filtration but also chemical processes like the maceration temperature, enzyme treatment and fining agent effects. Furthermore, the impacted metabolites were highlighted providing valuable data on the winemaking processes investigated.

CONCLUSIONS:

qNMR metabolomics offers a fast and reliable method to study the effects of winemaking practices on wine quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Inès Le Mao

University of Bordeaux, Œnology EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France,Gregory Da Costa, Jean Martin, Wiame El Batoul, Charlyne Bautista, Soizic Lacampagne, Tristan Richard University of Bordeaux, Œnology EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France

Contact the author

Keywords

metabolomics, qnmr, winemaking processes, quality

Citation

Related articles…

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Growth in global table grape production and consumption is fueled by the introduction of new seedless varieties

Table grape consumption worldwide has experienced a remarkable growth in the first two decades of the 21st century, becoming the third most consumed fresh fruit in some countries, after bananas and apples. This increase has been attributed to several reasons, including the availability of seedless grapes, which has been a key factor in the increase in consumption.

Effects of oak barrel aging monitored by 1H-NMR metabolomics

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1].