Macrowine 2021
IVES 9 IVES Conference Series 9 Winemaking processes discrimination by using qNMR metabolomics

Winemaking processes discrimination by using qNMR metabolomics

Abstract

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a). Since human factors are less studied while they also contribute a lot to the wine making, we wondered if this technique could also dissociate physical or chemical processes used in oenology. The goal of this work is to allow a better understanding of the interactions between the oenological processes and wine by finding metabolites that are responsible of winemaking processes’s differentiations through 1H‑NMR metabolomics targeted and untargeted (fingerprinting) approaches combined with advanced chemiometrics.

METHODS: Wine analyses were realized by qNMR approaches. Targeted (based on nearly fifty wine constituents) and untargeted analyses were carried out on wines having undergone several physical and chemical processes. Principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and similarity score (S-score) (Gougeon et al., 2019b) were performed out for the analytical discrimination of winemaking processes.

RESULTS: qNMR analyses associated with chemometrics allow discriminating not only the physical processed such as the filtration but also chemical processes like the maceration temperature, enzyme treatment and fining agent effects. Furthermore, the impacted metabolites were highlighted providing valuable data on the winemaking processes investigated.

CONCLUSIONS:

qNMR metabolomics offers a fast and reliable method to study the effects of winemaking practices on wine quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Inès Le Mao

University of Bordeaux, Œnology EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France,Gregory Da Costa, Jean Martin, Wiame El Batoul, Charlyne Bautista, Soizic Lacampagne, Tristan Richard University of Bordeaux, Œnology EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France

Contact the author

Keywords

metabolomics, qnmr, winemaking processes, quality

Citation

Related articles…

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

Influence of organic plant treatment on the terroir of microorganisms

Several factors like vineyard site, climate, grape variety, ripeness, physical health of the grapes and pest management influence the populations of indigenous yeasts on grapes and later on in spontaneous fermentations.

Enological, economical, social and viticulture ”terroir” units as fundamental elements of mosaic of “big” zoning

Nous savons tous très bien qu’on a assisté au cours de ces dix dernières années à une éclosion soudaine de recherches sur le zonage viti-vinicole qui, à partir par exemple du modèle du concept de “terroir”, se sont de plus en plus enrichies en passant aux “Unités ou Systèmes de Transformation” (UTTE) et “Valorisation” (UTCE) pour terminer avec les “Systèmes productifs globaux du Territoire” (UTB) comprenant en filière les aspects existentiels (UTBES), sociaux (UTBSO) et économiques (UTBEC) hypothisés dans le “GRANDE ZONAZIONE: Grand zonage” (MORLAT R., 1996, CARBONNEAU A., 1996, TOUZARD J.M. 1998, CARBONNEAU A., CARGNELLO G., 1996, 1998, CARGNELLO G., 1994, 1995, 1996, 1998, 1999, 2001, -MILOTIC A., CARGNELLO G., PERSURIC G., 1999, PERSURIC G., STAYER M., CARGNELLO G., 2000, MILOTIC A., OPLANIC M., CARGNELLO G., PERSURIC G., 2000).

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

The effects of different methods of soil management on the nutrient supply and the wine quality of organically grown Grüner Veltliner grapevines (wide-spaced high culture training system) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal).