Macrowine 2021
IVES 9 IVES Conference Series 9 Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

Abstract

AIM: Lactiplantibacillus plantarum species is wordwide used as starter for malolactic fermentation [1,2]. For the first time, in the present study, the use of L. plantarum (ML PrimeTM, Lallemand wine) to produce white wines with post-fermentative maceration extended until 60 days has been investigated.

METHODS: unpressed grapes of Catarratto cultivar were inoculated with the indigenous selected strain CS182 Saccharomyces cerevisiae [3]. After 24 hours, ML PrimeTM was inoculated into grape must. For the control trials, malolactic fermentation occurred spontaneously. During the alcoholic fermentation the microbiological and chemical-physical parameters were evaluated. After 60 days of post-fermentation maceration, the wines transferred into steel tanks and subjected to volatile organic compound investigation and sensory analysis.

RESULTS: grape must showed values of malic acid of 1.90 g/L. Interestingly, 24 hours after inoculation of ML PrimeTM, malic acid was totally converted into lactic acid that reached values of 1.54 g/l. Spontaneous malolactic fermentation started one month later the end of alcoholic fermentation. Experimental wines subjected to malolactic fermentation with ML PrimeTM showed a reduction of acid and bitter taste and were characterized by intense creamy and freshness both at smell and taste. Acetic acid contents was lower than 0.3 g/L in all experimental trials. 

CONCLUSIONS: inoculation of the ML PrimeTM before the addition of starter yeast into unpressed grape must allowed malolactic fermentation within 24-48h at 18°C. ML PrimeTM is an effective alternative to Oenococcus oeni to undertake malolactic fermentation in white wines subjected at long post-fermentative maceration

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Nicola Francesca

 Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Paola VAGNOLI, Lallemand Italia, Via Rossini 14/B, 37060 Castel D’Azzano, VR, Italy  Sibylle KRIEGER-WEBER, Lallemand S.A., Korntal-Münchigen, Germany.  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

Lactiplantibacillus plantarum; malolactic fermentation; catarratto; sensory analysis

Citation

Related articles…

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine.

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.

Development of spectral indices to monitoring non-destructive of ripeness for water stressed grapevine (Vitis vinifera L.) using contour map optimization

Accurate and non-destructive monitoring of grape ripening is essential for optimising harvest decisions, particularly under water stress conditions.

Screening of phenolic compounds and antioxidant potential of grapes, wine and grape by-products

Polyphenols, bioactive secondary metabolites abundantly found in various grapevine components such as stalks, skins, and seeds, have attracted considerable attention in recent decades due to their potential health benefits. These compounds, including flavan-3-ols, flavanols, flavones, and stilbenes, are known for their antioxidant and anti-inflammatory properties.

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily