Macrowine 2021
IVES 9 IVES Conference Series 9 Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

Abstract

AIM: Lactiplantibacillus plantarum species is wordwide used as starter for malolactic fermentation [1,2]. For the first time, in the present study, the use of L. plantarum (ML PrimeTM, Lallemand wine) to produce white wines with post-fermentative maceration extended until 60 days has been investigated.

METHODS: unpressed grapes of Catarratto cultivar were inoculated with the indigenous selected strain CS182 Saccharomyces cerevisiae [3]. After 24 hours, ML PrimeTM was inoculated into grape must. For the control trials, malolactic fermentation occurred spontaneously. During the alcoholic fermentation the microbiological and chemical-physical parameters were evaluated. After 60 days of post-fermentation maceration, the wines transferred into steel tanks and subjected to volatile organic compound investigation and sensory analysis.

RESULTS: grape must showed values of malic acid of 1.90 g/L. Interestingly, 24 hours after inoculation of ML PrimeTM, malic acid was totally converted into lactic acid that reached values of 1.54 g/l. Spontaneous malolactic fermentation started one month later the end of alcoholic fermentation. Experimental wines subjected to malolactic fermentation with ML PrimeTM showed a reduction of acid and bitter taste and were characterized by intense creamy and freshness both at smell and taste. Acetic acid contents was lower than 0.3 g/L in all experimental trials. 

CONCLUSIONS: inoculation of the ML PrimeTM before the addition of starter yeast into unpressed grape must allowed malolactic fermentation within 24-48h at 18°C. ML PrimeTM is an effective alternative to Oenococcus oeni to undertake malolactic fermentation in white wines subjected at long post-fermentative maceration

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Nicola Francesca

 Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Paola VAGNOLI, Lallemand Italia, Via Rossini 14/B, 37060 Castel D’Azzano, VR, Italy  Sibylle KRIEGER-WEBER, Lallemand S.A., Korntal-Münchigen, Germany.  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

Lactiplantibacillus plantarum; malolactic fermentation; catarratto; sensory analysis

Citation

Related articles…

Región Vitivinícola del Vale dos Vinhedos (Brasil): una metodología para la definición de límites geográficos y elaboración de cartas EN escala media

Los estudios regionales presentaron en Geografía, como en otras ciencias, en este siglo, varios enfoques. Cualquiera que sea la mirada sobre el espacio, en la base de la temática regional está la concepción

Identification and evaluation of the winemaking sub-zones of the PDO Amyndeo winegrowing region

Context and purpose of the study. The concept of terroir encompasses the investigation of the physical environment’s influence on grapevine physiology, grape composition, and wine quality, with an emphasis on employing viticultural zoning techniques to systematically characterize and analyze terroirs.

Sustainable vineyard management at the regional scale: insights from a Swiss winegrowing region

Swiss wine producers are faced to high production costs and low-priced wine imports.

Investigation on the potentiality of a biostimulant by Fabaceae tissues and rich in triacontanol to enhance grapevine resilience under drought stress

The primary objective of this research was to investigate the potential benefits of a Fabaceae-based product rich in triacontanol (a long-chain alcohol) applied to Vitis vinifera cv. Merlot, on key physiological and productive parameters of grapevines under controlled water stress conditions.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.