Macrowine 2021
IVES 9 IVES Conference Series 9 Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

Abstract

AIM: Lactiplantibacillus plantarum species is wordwide used as starter for malolactic fermentation [1,2]. For the first time, in the present study, the use of L. plantarum (ML PrimeTM, Lallemand wine) to produce white wines with post-fermentative maceration extended until 60 days has been investigated.

METHODS: unpressed grapes of Catarratto cultivar were inoculated with the indigenous selected strain CS182 Saccharomyces cerevisiae [3]. After 24 hours, ML PrimeTM was inoculated into grape must. For the control trials, malolactic fermentation occurred spontaneously. During the alcoholic fermentation the microbiological and chemical-physical parameters were evaluated. After 60 days of post-fermentation maceration, the wines transferred into steel tanks and subjected to volatile organic compound investigation and sensory analysis.

RESULTS: grape must showed values of malic acid of 1.90 g/L. Interestingly, 24 hours after inoculation of ML PrimeTM, malic acid was totally converted into lactic acid that reached values of 1.54 g/l. Spontaneous malolactic fermentation started one month later the end of alcoholic fermentation. Experimental wines subjected to malolactic fermentation with ML PrimeTM showed a reduction of acid and bitter taste and were characterized by intense creamy and freshness both at smell and taste. Acetic acid contents was lower than 0.3 g/L in all experimental trials. 

CONCLUSIONS: inoculation of the ML PrimeTM before the addition of starter yeast into unpressed grape must allowed malolactic fermentation within 24-48h at 18°C. ML PrimeTM is an effective alternative to Oenococcus oeni to undertake malolactic fermentation in white wines subjected at long post-fermentative maceration

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Nicola Francesca

 Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy,Antonio, ALFONZO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Rosario, PRESTIANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Michele, MATRAXIA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Valentina, CRAPARO,  Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Vincenzo, NASELLI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Paola VAGNOLI, Lallemand Italia, Via Rossini 14/B, 37060 Castel D’Azzano, VR, Italy  Sibylle KRIEGER-WEBER, Lallemand S.A., Korntal-Münchigen, Germany.  Giancarlo, MOSCHETTI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Luca, SETTANNI, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy  Raimondo, GAGLIO, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.  Antonella, MAGGIO, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d’Orleans II, Palermo, building 17, Italy  Nicola, FRANCESCA, Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.

Contact the author

Keywords

Lactiplantibacillus plantarum; malolactic fermentation; catarratto; sensory analysis

Citation

Related articles…

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density

Variability of Tempranillo phenology within the toro do (Spain) and its relationship to climatic characteristics

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.