Macrowine 2021
IVES 9 IVES Conference Series 9 Management of varietal thiols in white and rosé wines using biotechnical tools

Management of varietal thiols in white and rosé wines using biotechnical tools


The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines. Significant differences in the extraction of 3- sulfanylhexan-1-ol (3-SH) precursors were observed in juices from Merlot grapes. The use of maceration enzymes led to an increase in both S-glutathionylated (GSH-3SH) and S-cysteinylated (Cys-3SH) precursors. The same trend of extraction was observed in Sauvignon blanc grapes, even if not statistically differentiated. In relation to 4-methyl-4-sulfanyl-pentan-2-one (4-MSP) precursors, the Cys-4MSP was the sole compound to be found, exclusively in Sauvignon blanc must. However, the enzyme treatment did not increase the concentration of this precursor. Grapes were pressed and racked after 24 hours of cold settling. For each variety, both musts were fermented in triplicate, in the presence and absence of a yeast autolysate. The nutrition management imparted significant differences between the volatile thiols in the final wines. The use of yeast autolysate increased the 3-SH content by ⁓25% and ⁓46%, in both Sauvignon blanc and Merlot wines, respectively. Moreover, the concentration of 4-MSP was four-fold higher in Sauvignon blanc wines supplemented with yeast nutrients. In Merlot wines 4-MSP was undetectable, result consistent with the absence of its precursors in the must of this variety.


Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article


Adelaide Gallo 

Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’Adige, Italy,Alice BARBERO- Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’Adige, Italy  Loris TONIDANDEL- Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’Adige, Italy  Rémi SCHNEIDER-Oenobrands SAS Parc Agropolis II-Bât 5 2196 Bd de la Lironde-CS 34603, CEDEX 05, 34397 Montpellier, France  Roberto LARCHER- Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’Adige, Italy  Tomas ROMAN- Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’Adige, Italy

Contact the author


3- sulfanylhexan-1-ol; 4-methyl-4-sulfanyl-pentan-2-on; thiol precursors; maceration; wine aroma; pectolytic enzymes; yeast nutrients


Related articles…

Enological characters of thirty vines in four different zones of Tuscany

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Influence of the type of tanks employed for winemaking on red wine phenolic composition

The grape maturation process is being affected by the consequences of global climate change and, as a result, there is a gap at harvest time between the technological maturity of grapes (mostly the concentration of sugar and acids) and its phenolic quality. Due to this gap, the wines elaborated using those grapes show a non-adequate phenolic composition, which results in defects on its color and astringency characteristics. Astringency is mainly related to the salivary protein precipitation because of the interaction not only with wine flavanols but also with other wine phenolics, such as flavonols or different pigments.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Organic recycled mulches in sustainable viticulture: assessment of spontaneous plants communities and weed coverage

In recent years, developing more efficient and sustainable viticulture management has been essential due to the impact of climate change in semiarid regions. For this reason, the use of recycled organic mulching (ROM) in the vineyard has become an interesting strategy to cope with water stress, isolated soil from extreme temperatures and improving soil humidity, control the presence of weeds and therefore reduce the inputs of herbicides and improve soil fertility. This work aimed to analyse the effect of three different organic mulches [straw (S), grape pruning debris (GPD) and spent mushroom compost (SMC)] and two traditional soil management techniques [herbicide (H) and interrow (IN)] on weed coverage and the spontaneous plant communities’ presence. Data sampling was collected throughout the vine vegetative cycle of 2021 in La Rioja, Spain. The different soil management techniques had a clear effect on weed coverage and his development during the vine vegetative cycle. SMC and H were the treatments with the highest and the lowest coverage percentage, respectively. IN had a delayed weed emergence at the beginning of the vine vegetative cycle, but finally it reached maximum values nearby SMC. GPD and S had similar effects on weed emergence, reaching 25-30% of the maximum coverage values. A total of 29 herbaceous species were identified during the vegetative cycle, some of them very isolated and occasional. Principal component analysis (PCAs) showed a good association between spontaneous species and treatments, furthermore, specific species-treatment associations were found. Moreover, three clear groups of herbaceous communities were identified by cluster analysis. This study provides interesting information about the effect of different alternative soil management on herbaceous plant coverage and weed species communities which could contribute to making more sustainable viticulture.