Macrowine 2021
IVES 9 IVES Conference Series 9 Shades of shading: chemical and sensory evaluation of riesling grown under various shading techniques

Shades of shading: chemical and sensory evaluation of riesling grown under various shading techniques

Abstract

AIM: Sun exposure is needed for balanced grape ripening and sugar accumulation but is also one of the main drivers for a premature Riesling ageing. The aim of this study was to evaluate the modulation of both intensity and quality of light in the vineyard on key Riesling grape and wine parameters as an adaptation strategy to changing climate. Of particular interest was the kerosene aroma caused by the C13‑norisoprenoid TDN and other compounds associated with light-induced grape compositional changes.

METHODS: Over two vintages shade cloth of three different colours was applied to Riesling vines at bunch zone in South Australia. Light measurements and incident light wavelength assessments were performed during grape ripening, and subsequent grapes and wine were analysed for key bound and free aroma compounds. After 1-year of storage, wines were analysed by Quantitative Descriptive Analysis to quantify the holistic changes of light modulation to the sensory profile.

RESULTS: Depending on colour, shade cloth was successful in modulating either the quantity and/or wavelength of light, as well as showed different response of sugar accumulation. Shading reduced TDN concentrations and kerosene aroma in wines, with very little effect on other sensory descriptors. Interestingly, while presumed C13-norisoprenoid precursor profiles were altered between shading treatments, no significant differences were observed in resulting TDN levels. 

CONCLUSIONS

This study highlights the importance of light intensity over examined light wavelength in the vineyard to manipulate TDN. Additionally, light conditions differently affected maturity with possible implications for harvest timing and climate-induced vintage compression.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yevgeniya Grebneva

The Australian Wine Research Institute & the Department of Microbiology and Biochemistry, Hochschule Geisenheim University,Markus, HERDERICH, The Australian Wine Research Institute, Adelaide 5064, Australia  Doris, RAUHUT, Department of Microbiology and Biochemistry, Hochschule Geisenheim University  Eleanor, BILOGREVIC, The Australian Wine Research Institute, Adelaide 5064, Australia   Josh, HIXSON, The Australian Wine Research Institute, Adelaide 5064, Australia

Contact the author

Keywords

riesling, norisoprenoid, tdn, shade cloth

Citation

Related articles…

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades