Macrowine 2021
IVES 9 IVES Conference Series 9 Shades of shading: chemical and sensory evaluation of riesling grown under various shading techniques

Shades of shading: chemical and sensory evaluation of riesling grown under various shading techniques

Abstract

AIM: Sun exposure is needed for balanced grape ripening and sugar accumulation but is also one of the main drivers for a premature Riesling ageing. The aim of this study was to evaluate the modulation of both intensity and quality of light in the vineyard on key Riesling grape and wine parameters as an adaptation strategy to changing climate. Of particular interest was the kerosene aroma caused by the C13‑norisoprenoid TDN and other compounds associated with light-induced grape compositional changes.

METHODS: Over two vintages shade cloth of three different colours was applied to Riesling vines at bunch zone in South Australia. Light measurements and incident light wavelength assessments were performed during grape ripening, and subsequent grapes and wine were analysed for key bound and free aroma compounds. After 1-year of storage, wines were analysed by Quantitative Descriptive Analysis to quantify the holistic changes of light modulation to the sensory profile.

RESULTS: Depending on colour, shade cloth was successful in modulating either the quantity and/or wavelength of light, as well as showed different response of sugar accumulation. Shading reduced TDN concentrations and kerosene aroma in wines, with very little effect on other sensory descriptors. Interestingly, while presumed C13-norisoprenoid precursor profiles were altered between shading treatments, no significant differences were observed in resulting TDN levels. 

CONCLUSIONS

This study highlights the importance of light intensity over examined light wavelength in the vineyard to manipulate TDN. Additionally, light conditions differently affected maturity with possible implications for harvest timing and climate-induced vintage compression.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yevgeniya Grebneva

The Australian Wine Research Institute & the Department of Microbiology and Biochemistry, Hochschule Geisenheim University,Markus, HERDERICH, The Australian Wine Research Institute, Adelaide 5064, Australia  Doris, RAUHUT, Department of Microbiology and Biochemistry, Hochschule Geisenheim University  Eleanor, BILOGREVIC, The Australian Wine Research Institute, Adelaide 5064, Australia   Josh, HIXSON, The Australian Wine Research Institute, Adelaide 5064, Australia

Contact the author

Keywords

riesling, norisoprenoid, tdn, shade cloth

Citation

Related articles…

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

A total of 39 study sites from 11 commercial vineyards located in two traditional growing areas of Northern Italy were identified for airborne hyperspectral acquisition in summer 2009 with the Aisa-EAGLE Airborne Hyperspectral Imaging Sensor.

Evaluation of field inoculation of Kocuria rhizophila and Streptomyces violaceoruber as biostimulants under water availability conditions in grapevines

Agricultural productivity must promote management systems that incorporate sustainability principles, and viticulture is no exception.