Macrowine 2021
IVES 9 IVES Conference Series 9 The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Abstract

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported, only one published study (Cano-López et al. 2008) investigated the effects of initial phenolic content on wines undergoing MOX. The present study aims to establish the importance of this factor and specifically on light-coloured Pinot noir wines.Two Pinot noir wines with a low (PN1) and high (PN2) phenolic content were sterile filtered after malolactic fermentation and treated with two oxygen doses (i.e., 0.50 ± 0.08 and 2.17 ± 0.3 ppm/day) for 14 days with temperature control at 15oC. Control treatments had no MOX. Afterwards, the wines were aged for 1 month and followed by addition (100 mg/L) with the end point determined 4 days later.The results highlighted the importance of having high anthocyanin content for Pinot noir wines subjected to MOX on colour development. A higher anthocyanin content significantly increased colour intensity and resistant pigments in association with a greater increase in polymeric pigments. However, it did not guarantee colour stability, and bleaching erased the improvement on colour intensity in all wines.

We speculated that improvement of colour stability by MOX would be dependent on acetaldehyde production, forming pigments with the ethyl-bridged covalent bond that is more resistant to cleavage and bleaching. In this trials, limited acetaldehyde formation would expect after the removal of yeast with sterile filtration. Regarding tannin composition, MOX accelerated the decrease of (-)-epigallocatechin extension units in both PN1 and PN2. In PN1, the higher oxygen dosage led to the higher formation of tannin macromolecules and significantly lower tannin yield and (+)-catechin extension units, increasing the proportion of tannin terminals units.

These could be of concern for astringency perception (Ma et al. 2014). Therefore, MOX should be applied to Pinot noir and other low phenolic wines with caution.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yi Yang (Billy) 

The University of Auckland, New Zealand,Paul A. Kilmartin, The University of Auckland Rebecca C. Deed, The University of Auckland Leandro D. ARAUJO, Lincoln University

Contact the author

Keywords

microoxygenation, initial phenolic content, colour development, tannin composition, pinot noir wine

Citation

Related articles…

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.