Macrowine 2021
IVES 9 IVES Conference Series 9 The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Abstract

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported, only one published study (Cano-López et al. 2008) investigated the effects of initial phenolic content on wines undergoing MOX. The present study aims to establish the importance of this factor and specifically on light-coloured Pinot noir wines.Two Pinot noir wines with a low (PN1) and high (PN2) phenolic content were sterile filtered after malolactic fermentation and treated with two oxygen doses (i.e., 0.50 ± 0.08 and 2.17 ± 0.3 ppm/day) for 14 days with temperature control at 15oC. Control treatments had no MOX. Afterwards, the wines were aged for 1 month and followed by addition (100 mg/L) with the end point determined 4 days later.The results highlighted the importance of having high anthocyanin content for Pinot noir wines subjected to MOX on colour development. A higher anthocyanin content significantly increased colour intensity and resistant pigments in association with a greater increase in polymeric pigments. However, it did not guarantee colour stability, and bleaching erased the improvement on colour intensity in all wines.

We speculated that improvement of colour stability by MOX would be dependent on acetaldehyde production, forming pigments with the ethyl-bridged covalent bond that is more resistant to cleavage and bleaching. In this trials, limited acetaldehyde formation would expect after the removal of yeast with sterile filtration. Regarding tannin composition, MOX accelerated the decrease of (-)-epigallocatechin extension units in both PN1 and PN2. In PN1, the higher oxygen dosage led to the higher formation of tannin macromolecules and significantly lower tannin yield and (+)-catechin extension units, increasing the proportion of tannin terminals units.

These could be of concern for astringency perception (Ma et al. 2014). Therefore, MOX should be applied to Pinot noir and other low phenolic wines with caution.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yi Yang (Billy) 

The University of Auckland, New Zealand,Paul A. Kilmartin, The University of Auckland Rebecca C. Deed, The University of Auckland Leandro D. ARAUJO, Lincoln University

Contact the author

Keywords

microoxygenation, initial phenolic content, colour development, tannin composition, pinot noir wine

Citation

Related articles…

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

Characteristics of some Montefalco Sagrantino vineyards through polyphenolic components

Characteristics related to the climate and the soil of Montefalco in the centre of Italy have been defined in order to evaluate their influence on the red cv.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

Comportement du cépage Mourvèdre dans l’aire d’Appellation d’Origine Contrôlée de Bandol

The Appellation d’Origine Contrôlée of Bandol covers an area of ​​1365 ha, 83% of which are planted with vines, the annual production being around 40,000 hl. Among the wines produced, there are mainly reds which assert themselves over time, but also rosés characterized by their pale colour, generally orange; the whites represent a small part of the production. The main grape variety of this AOC is Mouvèdre, of Spanish origin, which is also found in Provence and Languedoc.