Macrowine 2021
IVES 9 IVES Conference Series 9 The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Abstract

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported, only one published study (Cano-López et al. 2008) investigated the effects of initial phenolic content on wines undergoing MOX. The present study aims to establish the importance of this factor and specifically on light-coloured Pinot noir wines.Two Pinot noir wines with a low (PN1) and high (PN2) phenolic content were sterile filtered after malolactic fermentation and treated with two oxygen doses (i.e., 0.50 ± 0.08 and 2.17 ± 0.3 ppm/day) for 14 days with temperature control at 15oC. Control treatments had no MOX. Afterwards, the wines were aged for 1 month and followed by addition (100 mg/L) with the end point determined 4 days later.The results highlighted the importance of having high anthocyanin content for Pinot noir wines subjected to MOX on colour development. A higher anthocyanin content significantly increased colour intensity and resistant pigments in association with a greater increase in polymeric pigments. However, it did not guarantee colour stability, and bleaching erased the improvement on colour intensity in all wines.

We speculated that improvement of colour stability by MOX would be dependent on acetaldehyde production, forming pigments with the ethyl-bridged covalent bond that is more resistant to cleavage and bleaching. In this trials, limited acetaldehyde formation would expect after the removal of yeast with sterile filtration. Regarding tannin composition, MOX accelerated the decrease of (-)-epigallocatechin extension units in both PN1 and PN2. In PN1, the higher oxygen dosage led to the higher formation of tannin macromolecules and significantly lower tannin yield and (+)-catechin extension units, increasing the proportion of tannin terminals units.

These could be of concern for astringency perception (Ma et al. 2014). Therefore, MOX should be applied to Pinot noir and other low phenolic wines with caution.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yi Yang (Billy) 

The University of Auckland, New Zealand,Paul A. Kilmartin, The University of Auckland Rebecca C. Deed, The University of Auckland Leandro D. ARAUJO, Lincoln University

Contact the author

Keywords

microoxygenation, initial phenolic content, colour development, tannin composition, pinot noir wine

Citation

Related articles…

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Vitis vinifera L. is one of the most important cultures for the soil and
climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.