Macrowine 2021
IVES 9 IVES Conference Series 9 The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Abstract

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported, only one published study (Cano-López et al. 2008) investigated the effects of initial phenolic content on wines undergoing MOX. The present study aims to establish the importance of this factor and specifically on light-coloured Pinot noir wines.Two Pinot noir wines with a low (PN1) and high (PN2) phenolic content were sterile filtered after malolactic fermentation and treated with two oxygen doses (i.e., 0.50 ± 0.08 and 2.17 ± 0.3 ppm/day) for 14 days with temperature control at 15oC. Control treatments had no MOX. Afterwards, the wines were aged for 1 month and followed by addition (100 mg/L) with the end point determined 4 days later.The results highlighted the importance of having high anthocyanin content for Pinot noir wines subjected to MOX on colour development. A higher anthocyanin content significantly increased colour intensity and resistant pigments in association with a greater increase in polymeric pigments. However, it did not guarantee colour stability, and bleaching erased the improvement on colour intensity in all wines.

We speculated that improvement of colour stability by MOX would be dependent on acetaldehyde production, forming pigments with the ethyl-bridged covalent bond that is more resistant to cleavage and bleaching. In this trials, limited acetaldehyde formation would expect after the removal of yeast with sterile filtration. Regarding tannin composition, MOX accelerated the decrease of (-)-epigallocatechin extension units in both PN1 and PN2. In PN1, the higher oxygen dosage led to the higher formation of tannin macromolecules and significantly lower tannin yield and (+)-catechin extension units, increasing the proportion of tannin terminals units.

These could be of concern for astringency perception (Ma et al. 2014). Therefore, MOX should be applied to Pinot noir and other low phenolic wines with caution.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yi Yang (Billy) 

The University of Auckland, New Zealand,Paul A. Kilmartin, The University of Auckland Rebecca C. Deed, The University of Auckland Leandro D. ARAUJO, Lincoln University

Contact the author

Keywords

microoxygenation, initial phenolic content, colour development, tannin composition, pinot noir wine

Citation

Related articles…

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha.

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).