Macrowine 2021
IVES 9 IVES Conference Series 9 Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

Abstract

AIM: The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes). The aim of the study was to provide a critical evaluation of two approaches to fusing multi-modal chemistry and sensory data, namely, multiblock multiple factor analysis (MFA) and concatenation using principal component analysis (PCA).

METHODS: Wines were submitted to sensory analysis using Pivot©Profile (Thuillier et al. 2015) and chemical analysis in four modes: antioxidant measurements (AM), volatile compounds composition (VCC), ultraviolet-visible light (UV-Vis) spectrophotometry (Mafata et al. 2019), and infra-red (IR) spectroscopy. Correspondence analysis (CA), principal component analysis (PCA), and multiple factor analysis (MFA) were used to model data under the data analysis steps involving data cleaning, visualizing, modelling and evaluation (Pagès 2004). Percentage explained variation (%EV) and regression vector (RV) coefficients were used as comparative evaluation parameters between data models (Abdi 2007).

RESULTS: IR spectral data were used as an example of the assessment of the need for data cleaning/pre-processing. Similarities in MFA and high RV coefficients indicated that the raw (unprocessed data) could be used for the data fusion. High RV coefficients and MFA proximity between the antioxidants and UV-Vis measurements indicated an overlap between the type of information contained in the two. The differences between the information captured in each of the five modes can be seen in the different measurements, from the knowledge of the theory/ ontext behind the technique, and statistically. Statistically, the differences are measured and visualised by a lack of overlap (redundancy) in the MFA and its accompanying cluster analysis. 

CONCLUSIONS

The %EV when performing PCA are higher than with MFA, a consequence of fusing big data sets from various modes and not necessarily a direct result of the relationships among the data sets. Therefore, the %EV was ruled out as a reliable measure of the differences in informational value between MFA and PCA fusion strategies. RV coefficients, of which MFA were highest, were the best measurements of the performance of data fusion approaches. MFA demonstrated greater appropriateness as a statistical tool for fusing multi-modal data.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jeanne Brand

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa,Mpho, MAFATA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa  Martin, KIDD, Centre for Statistical Consultation, Stellenbosch University, South Africa Andrei, MEDVEDOVICI, Faculty of Chemistry, University of Bucharest, Romania Astrid, BUICA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa

Contact the author

Keywords

data fusion; sensory evaluation; chemical composition; white wines; storage

Citation

Related articles…

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources.

Délimitation des terroirs dans les A.O. Rueda et Toro (Castilla y León-Espagne)

La délimitation et la caractérisation des zones viticoles posent en Espagne des problèmes spécifiques non seulement dus aux caractéristiques propres au territoire mais aussi à la dimension, la distribution et l’indice d’occupation viticole dans les appellations d’origine.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

Carbohydrate dynamics in Shiraz to determine seasonal allocation to the perennial and annual parts in respect to climatic challenges

The dynamic changes of non-structural carbohydrates (NSC) in grapevines during the growing season is driven by phenological events and environmental factors.