Macrowine 2021
IVES 9 IVES Conference Series 9 Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

Abstract

AIM: The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes). The aim of the study was to provide a critical evaluation of two approaches to fusing multi-modal chemistry and sensory data, namely, multiblock multiple factor analysis (MFA) and concatenation using principal component analysis (PCA).

METHODS: Wines were submitted to sensory analysis using Pivot©Profile (Thuillier et al. 2015) and chemical analysis in four modes: antioxidant measurements (AM), volatile compounds composition (VCC), ultraviolet-visible light (UV-Vis) spectrophotometry (Mafata et al. 2019), and infra-red (IR) spectroscopy. Correspondence analysis (CA), principal component analysis (PCA), and multiple factor analysis (MFA) were used to model data under the data analysis steps involving data cleaning, visualizing, modelling and evaluation (Pagès 2004). Percentage explained variation (%EV) and regression vector (RV) coefficients were used as comparative evaluation parameters between data models (Abdi 2007).

RESULTS: IR spectral data were used as an example of the assessment of the need for data cleaning/pre-processing. Similarities in MFA and high RV coefficients indicated that the raw (unprocessed data) could be used for the data fusion. High RV coefficients and MFA proximity between the antioxidants and UV-Vis measurements indicated an overlap between the type of information contained in the two. The differences between the information captured in each of the five modes can be seen in the different measurements, from the knowledge of the theory/ ontext behind the technique, and statistically. Statistically, the differences are measured and visualised by a lack of overlap (redundancy) in the MFA and its accompanying cluster analysis. 

CONCLUSIONS

The %EV when performing PCA are higher than with MFA, a consequence of fusing big data sets from various modes and not necessarily a direct result of the relationships among the data sets. Therefore, the %EV was ruled out as a reliable measure of the differences in informational value between MFA and PCA fusion strategies. RV coefficients, of which MFA were highest, were the best measurements of the performance of data fusion approaches. MFA demonstrated greater appropriateness as a statistical tool for fusing multi-modal data.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jeanne Brand

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa,Mpho, MAFATA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa  Martin, KIDD, Centre for Statistical Consultation, Stellenbosch University, South Africa Andrei, MEDVEDOVICI, Faculty of Chemistry, University of Bucharest, Romania Astrid, BUICA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa

Contact the author

Keywords

data fusion; sensory evaluation; chemical composition; white wines; storage

Citation

Related articles…

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées

Creativini: an augmented reality card game to promote the learning of the reasoning process of a technical management route for making wine 

Nowadays, the entire viticultural and enological process is wisely thought out according to the style of wine to be produced and the local climatic conditions. Acquiring the approach of a technical management route specific for wine production remains a complex learning process for students. To enhance such learning, The Ecole d’Ingénieurs de PURPAN (PURPAN), an engineering school located in Toulouse southwest France, has recently developed Creativini, a collaborative card game in English made of 150 cards spread into 14 batches. Students in groups of 3 to 6 must design a technical production route, from plant material to bottling.

Balearic varieties of grapevine: study of genetic variability in the response to water stress

The photosynthetic characteristics of twenty varieties of grapevine (Vitis vinifera L.) from Mallorca (Balearic Islands, Spain) and two widespread varieties

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Survey of winegrape irrigation practices in the Sacramento-San Joaquin Valley of California

In California vineyards, irrigation is considered as one of the most important decisions growers will make. Recent research has revealed that decisions of when to begin irrigation and how much water to apply have considerable consequences for final grape quality and hence wine quality. However, it is unclear whether and to what extent the average winegrape grower uses objective data to begin irrigating or to determine the amount of water to apply.