Macrowine 2021
IVES 9 IVES Conference Series 9 Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

Abstract

AIM: The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes). The aim of the study was to provide a critical evaluation of two approaches to fusing multi-modal chemistry and sensory data, namely, multiblock multiple factor analysis (MFA) and concatenation using principal component analysis (PCA).

METHODS: Wines were submitted to sensory analysis using Pivot©Profile (Thuillier et al. 2015) and chemical analysis in four modes: antioxidant measurements (AM), volatile compounds composition (VCC), ultraviolet-visible light (UV-Vis) spectrophotometry (Mafata et al. 2019), and infra-red (IR) spectroscopy. Correspondence analysis (CA), principal component analysis (PCA), and multiple factor analysis (MFA) were used to model data under the data analysis steps involving data cleaning, visualizing, modelling and evaluation (Pagès 2004). Percentage explained variation (%EV) and regression vector (RV) coefficients were used as comparative evaluation parameters between data models (Abdi 2007).

RESULTS: IR spectral data were used as an example of the assessment of the need for data cleaning/pre-processing. Similarities in MFA and high RV coefficients indicated that the raw (unprocessed data) could be used for the data fusion. High RV coefficients and MFA proximity between the antioxidants and UV-Vis measurements indicated an overlap between the type of information contained in the two. The differences between the information captured in each of the five modes can be seen in the different measurements, from the knowledge of the theory/ ontext behind the technique, and statistically. Statistically, the differences are measured and visualised by a lack of overlap (redundancy) in the MFA and its accompanying cluster analysis. 

CONCLUSIONS

The %EV when performing PCA are higher than with MFA, a consequence of fusing big data sets from various modes and not necessarily a direct result of the relationships among the data sets. Therefore, the %EV was ruled out as a reliable measure of the differences in informational value between MFA and PCA fusion strategies. RV coefficients, of which MFA were highest, were the best measurements of the performance of data fusion approaches. MFA demonstrated greater appropriateness as a statistical tool for fusing multi-modal data.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jeanne Brand

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa,Mpho, MAFATA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa  Martin, KIDD, Centre for Statistical Consultation, Stellenbosch University, South Africa Andrei, MEDVEDOVICI, Faculty of Chemistry, University of Bucharest, Romania Astrid, BUICA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa

Contact the author

Keywords

data fusion; sensory evaluation; chemical composition; white wines; storage

Citation

Related articles…

Aspect juridiques des terroirs

Le “terroir” est dans tous les discours, les articles, les étiquettes et les publicités. Le voca­ble est en situation d’utilisation euphorique. Indiscutablement l’emploi historique est agri­cole, puis viticole, mais il n’est jamais juridique.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Piloting grape ripening in a global warming scenario: feasible techniques are available

Under the pressure of global warming, several wine grape growing regions around the world are increasingly suffering from advanced and compressed phenology; endangering wine character while also creating serious logistic problems. From a physiological standpoint, the issue of delaying ripening is not simple as, in several instances, only a few processes must be delayed (i.e. sugar accumulation into the berries) while other events such as pigmentation and accumulation of other important phenolic compounds should proceed at a normal rate. Thus, the issue of decoupling technological maturity from phenolic maturity is another important consideration. Over the last decades, several research groups have endeavored to establish alternate cultural practices aimed at addressing this decoupling. In some cases, special applications of quite robust and well known practices regarding physiological principles have been utilized, however some completely new techniques are also being studied. In figure 1 of the review, we offer a panorama of the available tools and in the text we elaborate on those having provided most reliable and consistent results under an array of genotypes and environmental conditions. Among these, primary focus is given to post‐veraison—apical to the cluster—leaf removal (that can also be suitably replaced by applications of anti‐transpirants); the use of kaolin against multiple summers’ stresses; and a drastic version of late winter pruning having the potential to postpone ripening into a cooler period with improved grape composition and a limited negative impact on yield and storage reserves replenishment. 

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout