Macrowine 2021
IVES 9 IVES Conference Series 9 One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

Abstract

AIM: The aim of this study was to evaluate how the different tank materials could affect the chemical and sensory characteristics of a Sangiovese red wine during one-year aging. In particular, the impact of earthenware raw amphora, uncoated concrete, epoxy-coated concrete, new oak barrel, used oak barrel, and stainless steel tank on wine color stability was investigated. At six months aging, a part of the wines in each tank was bottled to compare the effect of bottle aging with the tank aging.

METHODS: A Sangiovese red wine from 2018 harvest was aged for twelve months in different tank materials in industrial scale (5 hL) and in triplicate. Phenolic composition, color indices and acetaldehyde content were monitored monthly during twelve months aging. At six, twelve and six months of bottle aging, the wines were also characterized for volatiles, phenolics, elementals profile, tartaric stability and for quantitative descriptive analysis.

RESULTS: After six months aging, phenols, color indices, elemental and volatile compounds differentiated the wines according to the tank materials. Wine aged in new and used oak barrels showed the highest content of polymeric pigments and color indices, together with the wine aged in earthenware raw amphorae, that showed also the highest hue. After twelve months, the wines aged in new and used oak barrels were still the highest in polymeric pigments followed by the earthenware raw amphorae and uncoated concrete tanks. Moreover, the same wine aged six months in uncoated concrete tank and then six months in glass bottle showed the highest content of polymeric pigments

(1). Concerning the elementals composition

(2). the uncoated concrete wine was very high in sodium while the earthenware raw amphora enriched the wine in calcium, iron and aluminum both after six and twelve months. The volatile profiles differentiate the wine according to the tank materials: acetaldehyde content, that has an important role in color stabilization, was the highest in wine aged in used oak barrel at six months, while at twelve months in wines aged in earthenware raw amphora and uncoated concrete, and in bottle for earthenware raw amphora and used oak barrel. Sensory analysis evidenced that the six months aged wines were separated in two groups:

i) the wine in new and used barrels;

ii) the wines aged in stainless steel, epoxy-coated and uncoated concrete, and earthenware raw amphora. After twelve months, the wines aged for six months in tanks and six months in bottles were separate according to the tank materials, while the twelve months tanks aged wines seemed to maintain the same characteristics that they showed at six months aging, and were more similar between them (3).

CONCLUSIONS

The results of this study give new information about the oenological use of different tank materials for the red wine aging with particular interest on wine color stability.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Valentina Canuti

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Lorenzo GUERRINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Alessandro PARENTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

sangiovese, concrete tank, earthenware raw amphorae, volatile profile, phenolic compounds, quantitative descriptive analysis

Citation

Related articles…

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced.

Innovation in pre- and post-harvest biocontrol: novel strategies against Botrytis cinerea for grape preservation

Driven by the demand for sustainable agriculture, biocontrol is emerging as a crucial alternative to chemical fungicides for crop protection.

StartupLab and HackaVitis: open innovation and technology transfer in the wine sector

The study analyzes a set of open innovation actions promoted by the innovation environments of the Instituto Federal do Rio Grande do Sul (IFRS), in cooperation with entities, companies in the sector and the Department of Innovation, Science and Technology of Rio Grande do Sul.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.