Macrowine 2021
IVES 9 IVES Conference Series 9 One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

Abstract

AIM: The aim of this study was to evaluate how the different tank materials could affect the chemical and sensory characteristics of a Sangiovese red wine during one-year aging. In particular, the impact of earthenware raw amphora, uncoated concrete, epoxy-coated concrete, new oak barrel, used oak barrel, and stainless steel tank on wine color stability was investigated. At six months aging, a part of the wines in each tank was bottled to compare the effect of bottle aging with the tank aging.

METHODS: A Sangiovese red wine from 2018 harvest was aged for twelve months in different tank materials in industrial scale (5 hL) and in triplicate. Phenolic composition, color indices and acetaldehyde content were monitored monthly during twelve months aging. At six, twelve and six months of bottle aging, the wines were also characterized for volatiles, phenolics, elementals profile, tartaric stability and for quantitative descriptive analysis.

RESULTS: After six months aging, phenols, color indices, elemental and volatile compounds differentiated the wines according to the tank materials. Wine aged in new and used oak barrels showed the highest content of polymeric pigments and color indices, together with the wine aged in earthenware raw amphorae, that showed also the highest hue. After twelve months, the wines aged in new and used oak barrels were still the highest in polymeric pigments followed by the earthenware raw amphorae and uncoated concrete tanks. Moreover, the same wine aged six months in uncoated concrete tank and then six months in glass bottle showed the highest content of polymeric pigments

(1). Concerning the elementals composition

(2). the uncoated concrete wine was very high in sodium while the earthenware raw amphora enriched the wine in calcium, iron and aluminum both after six and twelve months. The volatile profiles differentiate the wine according to the tank materials: acetaldehyde content, that has an important role in color stabilization, was the highest in wine aged in used oak barrel at six months, while at twelve months in wines aged in earthenware raw amphora and uncoated concrete, and in bottle for earthenware raw amphora and used oak barrel. Sensory analysis evidenced that the six months aged wines were separated in two groups:

i) the wine in new and used barrels;

ii) the wines aged in stainless steel, epoxy-coated and uncoated concrete, and earthenware raw amphora. After twelve months, the wines aged for six months in tanks and six months in bottles were separate according to the tank materials, while the twelve months tanks aged wines seemed to maintain the same characteristics that they showed at six months aging, and were more similar between them (3).

CONCLUSIONS

The results of this study give new information about the oenological use of different tank materials for the red wine aging with particular interest on wine color stability.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Valentina Canuti

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Lorenzo GUERRINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Alessandro PARENTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

sangiovese, concrete tank, earthenware raw amphorae, volatile profile, phenolic compounds, quantitative descriptive analysis

Citation

Related articles…

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer.

Vegetative propagation during domestication – rooting ability of wild grapevines

The origins of plant propagation trace back to the moment of early humans’ transition from a nomadic existence to settled agricultural societies, cultivating their food.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Aim: The main goal of this study was to find an efficient canopy management to limit the high temperature-related aroma losses of White Muscat grapes, and consequently to preserve the quality standards of Asti DOCG wines.

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed.