terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Abstract

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method. A completely randomized design was applied in triplicate. The treatments were: T1, 135 days of lees contact (LC); T2, 180 days LC; T3, 270 days LC; and T4, 360 days LC. General chemical analyses were carried out according to OIV methods, proteins and polysaccharides characterization by HRSEC-RID, and sensory analyses using the flash profile technique. The base wines had the following analytical parameters: total acidity 7.0 ± 0.5 g/L; pH 3.20 ± 0.15; alcohol 12.0 ± 0.2 % v/v, and volatile acidity 0.35 ± 0.15 g/L. At the sensory level, in the Moscatel Rosado wines, floral and fruity notes were prominent in T1 and T2, decreasing towards T3 and T4. For the Pedro Giménez and Blanca Oval varieties, fruit descriptors predominated in T1 and T2, which then decreased significantly over time (T3 and T4). Criolla Chica and Canelón were characterized by attributes of nuts and toasted bread, especially with longer lees contact time. In general, all varieties showed good balance in the mouth, but Chardonnay stood apart from the rest, with descriptors such as yeast, mouthfeel, and higher color intensity. These results revealed the technological potential of autochthonous genetic material to diversify the production of sparkling wines, providing regional identity.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Santiago Sari1, Constanza Gaitieri2, Jorge Prieto1,3, Mariela Assof1,3, Anibal Catania1, Rebeca Murillo-Peña4*, Sofía Villalobos5, Jordi Gombau5, Fernando Zamora5, Martín Fanzone 1,3

1Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Mendoza. San Martín 3853. CP 5507EVY, Luján de Cuyo, Mendoza, Argentina.
2Malpensado Wines, Mendoza, Argentina.
3Universidad Juan Agustín Maza. Centro de Estudios Vitícolas y Agroindustriales. Lateral Sur del Acceso Este 2245.CP 5519 Guaymallén, Mendoza, Argentina.
4Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja). Ctra. de Burgos, Km. 6. CP 26007 Logroño, La Rioja, España.
5Universidad Rovira i Virgili. Facultad de Enología. Departamento de Bioquímica y Biotecnología. C/Marcel.li Domingo s/n, 43007 Tarragona, España.

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]